WIP on priv spec v1.9
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "htif.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id)
23 : sim(sim), ext(NULL), disassembler(new disassembler_t),
24 id(id), run(false), debug(false)
25 {
26 parse_isa_string(isa);
27
28 mmu = new mmu_t(sim->mem, sim->memsz);
29 mmu->set_processor(this);
30
31 reset(true);
32
33 register_base_instructions();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = 0, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87
88 while (*p) {
89 isa |= 1L << (*p - 'a');
90
91 if (auto next = strchr(all_subsets, *p)) {
92 all_subsets = next + 1;
93 p++;
94 } else if (*p == 'x') {
95 const char* ext = p+1, *end = ext;
96 while (islower(*end))
97 end++;
98 register_extension(find_extension(std::string(ext, end - ext).c_str())());
99 p = end;
100 } else {
101 bad_isa_string(str);
102 }
103 }
104
105 if (supports_extension('D') && !supports_extension('F'))
106 bad_isa_string(str);
107
108 // if we have IMAFD, advertise G, too
109 if (supports_extension('I') && supports_extension('M') &&
110 supports_extension('A') && supports_extension('D'))
111 isa |= 1L << ('g' - 'a');
112
113 // advertise support for supervisor and user modes
114 isa |= 1L << ('s' - 'a');
115 isa |= 1L << ('u' - 'a');
116 }
117
118 void state_t::reset()
119 {
120 memset(this, 0, sizeof(*this));
121 prv = PRV_M;
122 pc = DEFAULT_RSTVEC;
123 load_reservation = -1;
124 }
125
126 void processor_t::set_debug(bool value)
127 {
128 debug = value;
129 if (ext)
130 ext->set_debug(value);
131 }
132
133 void processor_t::set_histogram(bool value)
134 {
135 histogram_enabled = value;
136 #ifndef RISCV_ENABLE_HISTOGRAM
137 if (value) {
138 fprintf(stderr, "PC Histogram support has not been properly enabled;");
139 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
140 }
141 #endif
142 }
143
144 void processor_t::reset(bool value)
145 {
146 if (run == !value)
147 return;
148 run = !value;
149
150 state.reset();
151 set_csr(CSR_MSTATUS, state.mstatus);
152
153 if (ext)
154 ext->reset(); // reset the extension
155 }
156
157 void processor_t::raise_interrupt(reg_t which)
158 {
159 throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
160 }
161
162 static int ctz(reg_t val)
163 {
164 int res = 0;
165 if (val)
166 while ((val & 1) == 0)
167 val >>= 1, res++;
168 return res;
169 }
170
171 void processor_t::take_interrupt()
172 {
173 check_timer();
174
175 reg_t interrupts = state.mip & state.mie;
176
177 reg_t m_interrupts = interrupts & ~state.mideleg;
178 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
179 if ((state.prv < PRV_M || (state.prv == PRV_M && mie)) && m_interrupts)
180 raise_interrupt(ctz(m_interrupts));
181
182 reg_t s_interrupts = interrupts & state.mideleg;
183 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
184 if ((state.prv < PRV_S || (state.prv == PRV_S && sie)) && s_interrupts)
185 raise_interrupt(ctz(s_interrupts));
186 }
187
188 void processor_t::check_timer()
189 {
190 if (sim->rtc >= state.mtimecmp)
191 state.mip |= MIP_MTIP;
192 }
193
194 static bool validate_priv(reg_t priv)
195 {
196 return priv == PRV_U || priv == PRV_S || priv == PRV_M;
197 }
198
199 void processor_t::set_privilege(reg_t prv)
200 {
201 assert(validate_priv(prv));
202 mmu->flush_tlb();
203 state.prv = prv;
204 }
205
206 void processor_t::take_trap(trap_t& t, reg_t epc)
207 {
208 if (debug)
209 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
210 id, t.name(), epc);
211
212 // by default, trap to M-mode, unless delegated to S-mode
213 reg_t bit = t.cause();
214 reg_t deleg = state.medeleg;
215 if (bit & ((reg_t)1 << (max_xlen-1)))
216 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
217 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
218 // handle the trap in S-mode
219 state.pc = state.stvec;
220 state.scause = t.cause();
221 state.sepc = epc;
222 if (t.has_badaddr())
223 state.sbadaddr = t.get_badaddr();
224
225 reg_t s = state.mstatus;
226 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
227 s = set_field(s, MSTATUS_SPP, state.prv);
228 s = set_field(s, MSTATUS_SIE, 0);
229 set_csr(CSR_MSTATUS, s);
230 set_privilege(PRV_S);
231 } else {
232 state.pc = DEFAULT_MTVEC;
233 state.mcause = t.cause();
234 state.mepc = epc;
235 if (t.has_badaddr())
236 state.mbadaddr = t.get_badaddr();
237
238 reg_t s = state.mstatus;
239 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
240 s = set_field(s, MSTATUS_MPP, state.prv);
241 s = set_field(s, MSTATUS_MIE, 0);
242 set_csr(CSR_MSTATUS, s);
243 set_privilege(PRV_M);
244 }
245
246 yield_load_reservation();
247 }
248
249 void processor_t::disasm(insn_t insn)
250 {
251 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
252 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
253 id, state.pc, bits, disassembler->disassemble(insn).c_str());
254 }
255
256 static bool validate_vm(int max_xlen, reg_t vm)
257 {
258 if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
259 return true;
260 if (max_xlen == 32 && vm == VM_SV32)
261 return true;
262 return vm == VM_MBARE;
263 }
264
265 void processor_t::set_csr(int which, reg_t val)
266 {
267 val = zext_xlen(val);
268 reg_t all_ints = MIP_SSIP | MIP_MSIP | MIP_STIP | MIP_MTIP | (1UL << IRQ_HOST);
269 reg_t s_ints = MIP_SSIP | MIP_STIP;
270 switch (which)
271 {
272 case CSR_FFLAGS:
273 dirty_fp_state;
274 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
275 break;
276 case CSR_FRM:
277 dirty_fp_state;
278 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
279 break;
280 case CSR_FCSR:
281 dirty_fp_state;
282 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
283 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
284 break;
285 case CSR_MSTATUS: {
286 if ((val ^ state.mstatus) &
287 (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM))
288 mmu->flush_tlb();
289
290 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
291 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
292 | (ext ? MSTATUS_XS : 0);
293
294 if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
295 mask |= MSTATUS_VM;
296 if (validate_priv(get_field(val, MSTATUS_MPP)))
297 mask |= MSTATUS_MPP;
298
299 state.mstatus = (state.mstatus & ~mask) | (val & mask);
300
301 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
302 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
303 if (max_xlen == 32)
304 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
305 else
306 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
307
308 // spike supports the notion of xlen < max_xlen, but current priv spec
309 // doesn't provide a mechanism to run RV32 software on an RV64 machine
310 xlen = max_xlen;
311 break;
312 }
313 case CSR_MIP: {
314 reg_t mask = all_ints &~ MIP_MTIP;
315 state.mip = (state.mip & ~mask) | (val & mask);
316 break;
317 }
318 case CSR_MIPI:
319 state.mip = set_field(state.mip, MIP_MSIP, val & 1);
320 break;
321 case CSR_MIE:
322 state.mie = (state.mie & ~all_ints) | (val & all_ints);
323 break;
324 case CSR_MIDELEG:
325 state.mideleg = (state.mideleg & ~s_ints) | (val & s_ints);
326 break;
327 case CSR_MEDELEG: {
328 reg_t mask = 0;
329 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
330 #include "encoding.h"
331 #undef DECLARE_CAUSE
332 state.medeleg = (state.medeleg & ~mask) | (val & mask);
333 break;
334 }
335 case CSR_SSTATUS: {
336 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
337 | SSTATUS_XS | SSTATUS_PUM;
338 set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
339 break;
340 }
341 case CSR_SIP: {
342 reg_t mask = s_ints &~ MIP_STIP;
343 state.mip = (state.mip & ~mask) | (val & mask);
344 break;
345 }
346 case CSR_SIE: {
347 reg_t mask = s_ints;
348 state.mie = (state.mie & ~mask) | (val & mask);
349 break;
350 }
351 case CSR_SEPC: state.sepc = val; break;
352 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
353 case CSR_SPTBR: state.sptbr = val; break;
354 case CSR_SSCRATCH: state.sscratch = val; break;
355 case CSR_SCAUSE: state.scause = val; break;
356 case CSR_SBADADDR: state.sbadaddr = val; break;
357 case CSR_MEPC: state.mepc = val; break;
358 case CSR_MSCRATCH: state.mscratch = val; break;
359 case CSR_MCAUSE: state.mcause = val; break;
360 case CSR_MBADADDR: state.mbadaddr = val; break;
361 case CSR_MTIMECMP:
362 state.mip &= ~MIP_MTIP;
363 state.mtimecmp = val;
364 break;
365 case CSR_MTOHOST:
366 if (state.tohost == 0)
367 state.tohost = val;
368 break;
369 case CSR_MFROMHOST:
370 state.mip = (state.mip & ~(1 << IRQ_HOST)) | (val ? (1 << IRQ_HOST) : 0);
371 state.fromhost = val;
372 break;
373 }
374 }
375
376 reg_t processor_t::get_csr(int which)
377 {
378 switch (which)
379 {
380 case CSR_FFLAGS:
381 require_fp;
382 if (!supports_extension('F'))
383 break;
384 return state.fflags;
385 case CSR_FRM:
386 require_fp;
387 if (!supports_extension('F'))
388 break;
389 return state.frm;
390 case CSR_FCSR:
391 require_fp;
392 if (!supports_extension('F'))
393 break;
394 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
395 case CSR_MTIME: return sim->rtc;
396 case CSR_MCYCLE: return state.minstret;
397 case CSR_MINSTRET: return state.minstret;
398 case CSR_MTIMEH: if (xlen > 32) break; else return sim->rtc >> 32;
399 case CSR_MCYCLEH: if (xlen > 32) break; else return state.minstret >> 32;
400 case CSR_MINSTRETH: if (xlen > 32) break; else return state.minstret >> 32;
401 case CSR_SSTATUS: {
402 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
403 | SSTATUS_XS | SSTATUS_PUM;
404 reg_t sstatus = state.mstatus & mask;
405 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
406 (sstatus & SSTATUS_XS) == SSTATUS_XS)
407 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
408 return sstatus;
409 }
410 case CSR_SIP: return state.mip & (MIP_SSIP | MIP_STIP);
411 case CSR_SIE: return state.mie & (MIP_SSIP | MIP_STIP);
412 case CSR_SEPC: return state.sepc;
413 case CSR_SBADADDR: return state.sbadaddr;
414 case CSR_STVEC: return state.stvec;
415 case CSR_SCAUSE:
416 if (max_xlen > xlen)
417 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
418 return state.scause;
419 case CSR_SPTBR: return state.sptbr;
420 case CSR_SASID: return 0;
421 case CSR_SSCRATCH: return state.sscratch;
422 case CSR_MSTATUS: return state.mstatus;
423 case CSR_MIP: return state.mip;
424 case CSR_MIPI: return 0;
425 case CSR_MIE: return state.mie;
426 case CSR_MEPC: return state.mepc;
427 case CSR_MSCRATCH: return state.mscratch;
428 case CSR_MCAUSE: return state.mcause;
429 case CSR_MBADADDR: return state.mbadaddr;
430 case CSR_MTIMECMP: return state.mtimecmp;
431 case CSR_MISA: return isa;
432 case CSR_MARCHID: return 0;
433 case CSR_MIMPID: return 0;
434 case CSR_MVENDORID: return 0;
435 case CSR_MHARTID: return id;
436 case CSR_MTVEC: return DEFAULT_MTVEC;
437 case CSR_MEDELEG: return state.medeleg;
438 case CSR_MIDELEG: return state.mideleg;
439 case CSR_MTOHOST:
440 sim->get_htif()->tick(); // not necessary, but faster
441 return state.tohost;
442 case CSR_MFROMHOST:
443 sim->get_htif()->tick(); // not necessary, but faster
444 return state.fromhost;
445 case CSR_MCFGADDR: return sim->memsz;
446 case CSR_UARCH0:
447 case CSR_UARCH1:
448 case CSR_UARCH2:
449 case CSR_UARCH3:
450 case CSR_UARCH4:
451 case CSR_UARCH5:
452 case CSR_UARCH6:
453 case CSR_UARCH7:
454 case CSR_UARCH8:
455 case CSR_UARCH9:
456 case CSR_UARCH10:
457 case CSR_UARCH11:
458 case CSR_UARCH12:
459 case CSR_UARCH13:
460 case CSR_UARCH14:
461 case CSR_UARCH15:
462 return 0;
463 }
464 throw trap_illegal_instruction();
465 }
466
467 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
468 {
469 throw trap_illegal_instruction();
470 }
471
472 insn_func_t processor_t::decode_insn(insn_t insn)
473 {
474 // look up opcode in hash table
475 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
476 insn_desc_t desc = opcode_cache[idx];
477
478 if (unlikely(insn.bits() != desc.match)) {
479 // fall back to linear search
480 insn_desc_t* p = &instructions[0];
481 while ((insn.bits() & p->mask) != p->match)
482 p++;
483 desc = *p;
484
485 if (p->mask != 0 && p > &instructions[0]) {
486 if (p->match != (p-1)->match && p->match != (p+1)->match) {
487 // move to front of opcode list to reduce miss penalty
488 while (--p >= &instructions[0])
489 *(p+1) = *p;
490 instructions[0] = desc;
491 }
492 }
493
494 opcode_cache[idx] = desc;
495 opcode_cache[idx].match = insn.bits();
496 }
497
498 return xlen == 64 ? desc.rv64 : desc.rv32;
499 }
500
501 void processor_t::register_insn(insn_desc_t desc)
502 {
503 instructions.push_back(desc);
504 }
505
506 void processor_t::build_opcode_map()
507 {
508 struct cmp {
509 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
510 if (lhs.match == rhs.match)
511 return lhs.mask > rhs.mask;
512 return lhs.match > rhs.match;
513 }
514 };
515 std::sort(instructions.begin(), instructions.end(), cmp());
516
517 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
518 opcode_cache[i] = {1, 0, &illegal_instruction, &illegal_instruction};
519 }
520
521 void processor_t::register_extension(extension_t* x)
522 {
523 for (auto insn : x->get_instructions())
524 register_insn(insn);
525 build_opcode_map();
526 for (auto disasm_insn : x->get_disasms())
527 disassembler->add_insn(disasm_insn);
528 if (ext != NULL)
529 throw std::logic_error("only one extension may be registered");
530 ext = x;
531 x->set_processor(this);
532 }
533
534 void processor_t::register_base_instructions()
535 {
536 #define DECLARE_INSN(name, match, mask) \
537 insn_bits_t name##_match = (match), name##_mask = (mask);
538 #include "encoding.h"
539 #undef DECLARE_INSN
540
541 #define DEFINE_INSN(name) \
542 REGISTER_INSN(this, name, name##_match, name##_mask)
543 #include "insn_list.h"
544 #undef DEFINE_INSN
545
546 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
547 build_opcode_map();
548 }
549
550 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
551 {
552 try {
553 auto res = get_csr(addr / (max_xlen / 8));
554 memcpy(bytes, &res, len);
555 return true;
556 } catch (trap_illegal_instruction& t) {
557 return false;
558 }
559 }
560
561 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
562 {
563 try {
564 reg_t value = 0;
565 memcpy(&value, bytes, len);
566 set_csr(addr / (max_xlen / 8), value);
567 return true;
568 } catch (trap_illegal_instruction& t) {
569 return false;
570 }
571 }