Now you can halt/continue from gdb.
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "htif.h"
10 #include "disasm.h"
11 #include <cinttypes>
12 #include <cmath>
13 #include <cstdlib>
14 #include <iostream>
15 #include <assert.h>
16 #include <limits.h>
17 #include <stdexcept>
18 #include <algorithm>
19
20 #undef STATE
21 #define STATE state
22
23 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id)
24 : sim(sim), ext(NULL), disassembler(new disassembler_t),
25 id(id), run(false), debug(false), halted(false)
26 {
27 parse_isa_string(isa);
28
29 mmu = new mmu_t(sim, this);
30
31 reset(true);
32
33 register_base_instructions();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87
88 while (*p) {
89 isa |= 1L << (*p - 'a');
90
91 if (auto next = strchr(all_subsets, *p)) {
92 all_subsets = next + 1;
93 p++;
94 } else if (*p == 'x') {
95 const char* ext = p+1, *end = ext;
96 while (islower(*end))
97 end++;
98 register_extension(find_extension(std::string(ext, end - ext).c_str())());
99 p = end;
100 } else {
101 bad_isa_string(str);
102 }
103 }
104
105 if (supports_extension('D') && !supports_extension('F'))
106 bad_isa_string(str);
107
108 // advertise support for supervisor and user modes
109 isa |= 1L << ('s' - 'a');
110 isa |= 1L << ('u' - 'a');
111 }
112
113 void state_t::reset()
114 {
115 memset(this, 0, sizeof(*this));
116 prv = PRV_M;
117 pc = DEFAULT_RSTVEC;
118 mtvec = DEFAULT_MTVEC;
119 load_reservation = -1;
120 }
121
122 void processor_t::set_debug(bool value)
123 {
124 debug = value;
125 if (ext)
126 ext->set_debug(value);
127 }
128
129 void processor_t::set_halted(bool value)
130 {
131 halted = value;
132 }
133
134 void processor_t::set_histogram(bool value)
135 {
136 histogram_enabled = value;
137 #ifndef RISCV_ENABLE_HISTOGRAM
138 if (value) {
139 fprintf(stderr, "PC Histogram support has not been properly enabled;");
140 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
141 }
142 #endif
143 }
144
145 void processor_t::reset(bool value)
146 {
147 if (run == !value)
148 return;
149 run = !value;
150
151 state.reset();
152 set_csr(CSR_MSTATUS, state.mstatus);
153
154 if (ext)
155 ext->reset(); // reset the extension
156 }
157
158 void processor_t::raise_interrupt(reg_t which)
159 {
160 throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
161 }
162
163 static int ctz(reg_t val)
164 {
165 int res = 0;
166 if (val)
167 while ((val & 1) == 0)
168 val >>= 1, res++;
169 return res;
170 }
171
172 void processor_t::take_interrupt()
173 {
174 reg_t pending_interrupts = state.mip & state.mie;
175
176 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
177 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
178 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
179
180 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
181 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
182 enabled_interrupts |= pending_interrupts & state.mideleg & -s_enabled;
183
184 if (enabled_interrupts)
185 raise_interrupt(ctz(enabled_interrupts));
186 }
187
188 static bool validate_priv(reg_t priv)
189 {
190 return priv == PRV_U || priv == PRV_S || priv == PRV_M;
191 }
192
193 void processor_t::set_privilege(reg_t prv)
194 {
195 assert(validate_priv(prv));
196 mmu->flush_tlb();
197 state.prv = prv;
198 }
199
200 void processor_t::take_trap(trap_t& t, reg_t epc)
201 {
202 if (debug)
203 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
204 id, t.name(), epc);
205
206 // by default, trap to M-mode, unless delegated to S-mode
207 reg_t bit = t.cause();
208 reg_t deleg = state.medeleg;
209 if (bit & ((reg_t)1 << (max_xlen-1)))
210 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
211 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
212 // handle the trap in S-mode
213 state.pc = state.stvec;
214 state.scause = t.cause();
215 state.sepc = epc;
216 if (t.has_badaddr())
217 state.sbadaddr = t.get_badaddr();
218
219 reg_t s = state.mstatus;
220 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
221 s = set_field(s, MSTATUS_SPP, state.prv);
222 s = set_field(s, MSTATUS_SIE, 0);
223 set_csr(CSR_MSTATUS, s);
224 set_privilege(PRV_S);
225 } else {
226 state.pc = state.mtvec;
227 state.mcause = t.cause();
228 state.mepc = epc;
229 if (t.has_badaddr())
230 state.mbadaddr = t.get_badaddr();
231
232 reg_t s = state.mstatus;
233 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
234 s = set_field(s, MSTATUS_MPP, state.prv);
235 s = set_field(s, MSTATUS_MIE, 0);
236 set_csr(CSR_MSTATUS, s);
237 set_privilege(PRV_M);
238 }
239
240 yield_load_reservation();
241 }
242
243 void processor_t::disasm(insn_t insn)
244 {
245 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
246 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
247 id, state.pc, bits, disassembler->disassemble(insn).c_str());
248 }
249
250 static bool validate_vm(int max_xlen, reg_t vm)
251 {
252 if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
253 return true;
254 if (max_xlen == 32 && vm == VM_SV32)
255 return true;
256 return vm == VM_MBARE;
257 }
258
259 void processor_t::set_csr(int which, reg_t val)
260 {
261 val = zext_xlen(val);
262 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
263 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
264 switch (which)
265 {
266 case CSR_FFLAGS:
267 dirty_fp_state;
268 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
269 break;
270 case CSR_FRM:
271 dirty_fp_state;
272 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
273 break;
274 case CSR_FCSR:
275 dirty_fp_state;
276 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
277 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
278 break;
279 case CSR_MSTATUS: {
280 if ((val ^ state.mstatus) &
281 (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM))
282 mmu->flush_tlb();
283
284 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
285 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
286 | (ext ? MSTATUS_XS : 0);
287
288 if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
289 mask |= MSTATUS_VM;
290 if (validate_priv(get_field(val, MSTATUS_MPP)))
291 mask |= MSTATUS_MPP;
292
293 state.mstatus = (state.mstatus & ~mask) | (val & mask);
294
295 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
296 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
297 if (max_xlen == 32)
298 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
299 else
300 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
301
302 // spike supports the notion of xlen < max_xlen, but current priv spec
303 // doesn't provide a mechanism to run RV32 software on an RV64 machine
304 xlen = max_xlen;
305 break;
306 }
307 case CSR_MIP: {
308 reg_t mask = MIP_SSIP | MIP_STIP;
309 state.mip = (state.mip & ~mask) | (val & mask);
310 break;
311 }
312 case CSR_MIE:
313 state.mie = (state.mie & ~all_ints) | (val & all_ints);
314 break;
315 case CSR_MIDELEG:
316 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
317 break;
318 case CSR_MEDELEG: {
319 reg_t mask = 0;
320 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
321 #include "encoding.h"
322 #undef DECLARE_CAUSE
323 state.medeleg = (state.medeleg & ~mask) | (val & mask);
324 break;
325 }
326 case CSR_MUCOUNTEREN:
327 state.mucounteren = val & 7;
328 break;
329 case CSR_MSCOUNTEREN:
330 state.mscounteren = val & 7;
331 break;
332 case CSR_SSTATUS: {
333 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
334 | SSTATUS_XS | SSTATUS_PUM;
335 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
336 }
337 case CSR_SIP:
338 return set_csr(CSR_MIP,
339 (state.mip & ~state.mideleg) | (val & state.mideleg));
340 case CSR_SIE:
341 return set_csr(CSR_MIE,
342 (state.mie & ~state.mideleg) | (val & state.mideleg));
343 case CSR_SEPC: state.sepc = val; break;
344 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
345 case CSR_SPTBR: state.sptbr = val; break;
346 case CSR_SSCRATCH: state.sscratch = val; break;
347 case CSR_SCAUSE: state.scause = val; break;
348 case CSR_SBADADDR: state.sbadaddr = val; break;
349 case CSR_MEPC: state.mepc = val; break;
350 case CSR_MTVEC: state.mtvec = val >> 2 << 2; break;
351 case CSR_MSCRATCH: state.mscratch = val; break;
352 case CSR_MCAUSE: state.mcause = val; break;
353 case CSR_MBADADDR: state.mbadaddr = val; break;
354 }
355 }
356
357 reg_t processor_t::get_csr(int which)
358 {
359 switch (which)
360 {
361 case CSR_FFLAGS:
362 require_fp;
363 if (!supports_extension('F'))
364 break;
365 return state.fflags;
366 case CSR_FRM:
367 require_fp;
368 if (!supports_extension('F'))
369 break;
370 return state.frm;
371 case CSR_FCSR:
372 require_fp;
373 if (!supports_extension('F'))
374 break;
375 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
376 case CSR_TIME:
377 case CSR_INSTRET:
378 case CSR_CYCLE:
379 if ((state.mucounteren >> (which & (xlen-1))) & 1)
380 return get_csr(which + (CSR_MCYCLE - CSR_CYCLE));
381 break;
382 case CSR_STIME:
383 case CSR_SINSTRET:
384 case CSR_SCYCLE:
385 if ((state.mscounteren >> (which & (xlen-1))) & 1)
386 return get_csr(which + (CSR_MCYCLE - CSR_SCYCLE));
387 break;
388 case CSR_MUCOUNTEREN: return state.mucounteren;
389 case CSR_MSCOUNTEREN: return state.mscounteren;
390 case CSR_MUCYCLE_DELTA: return 0;
391 case CSR_MUTIME_DELTA: return 0;
392 case CSR_MUINSTRET_DELTA: return 0;
393 case CSR_MSCYCLE_DELTA: return 0;
394 case CSR_MSTIME_DELTA: return 0;
395 case CSR_MSINSTRET_DELTA: return 0;
396 case CSR_MUCYCLE_DELTAH: if (xlen > 32) break; else return 0;
397 case CSR_MUTIME_DELTAH: if (xlen > 32) break; else return 0;
398 case CSR_MUINSTRET_DELTAH: if (xlen > 32) break; else return 0;
399 case CSR_MSCYCLE_DELTAH: if (xlen > 32) break; else return 0;
400 case CSR_MSTIME_DELTAH: if (xlen > 32) break; else return 0;
401 case CSR_MSINSTRET_DELTAH: if (xlen > 32) break; else return 0;
402 case CSR_MCYCLE: return state.minstret;
403 case CSR_MINSTRET: return state.minstret;
404 case CSR_MCYCLEH: if (xlen > 32) break; else return state.minstret >> 32;
405 case CSR_MINSTRETH: if (xlen > 32) break; else return state.minstret >> 32;
406 case CSR_SSTATUS: {
407 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
408 | SSTATUS_XS | SSTATUS_PUM;
409 reg_t sstatus = state.mstatus & mask;
410 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
411 (sstatus & SSTATUS_XS) == SSTATUS_XS)
412 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
413 return sstatus;
414 }
415 case CSR_SIP: return state.mip & state.mideleg;
416 case CSR_SIE: return state.mie & state.mideleg;
417 case CSR_SEPC: return state.sepc;
418 case CSR_SBADADDR: return state.sbadaddr;
419 case CSR_STVEC: return state.stvec;
420 case CSR_SCAUSE:
421 if (max_xlen > xlen)
422 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
423 return state.scause;
424 case CSR_SPTBR: return state.sptbr;
425 case CSR_SASID: return 0;
426 case CSR_SSCRATCH: return state.sscratch;
427 case CSR_MSTATUS: return state.mstatus;
428 case CSR_MIP: return state.mip;
429 case CSR_MIE: return state.mie;
430 case CSR_MEPC: return state.mepc;
431 case CSR_MSCRATCH: return state.mscratch;
432 case CSR_MCAUSE: return state.mcause;
433 case CSR_MBADADDR: return state.mbadaddr;
434 case CSR_MISA: return isa;
435 case CSR_MARCHID: return 0;
436 case CSR_MIMPID: return 0;
437 case CSR_MVENDORID: return 0;
438 case CSR_MHARTID: return id;
439 case CSR_MTVEC: return state.mtvec;
440 case CSR_MEDELEG: return state.medeleg;
441 case CSR_MIDELEG: return state.mideleg;
442 }
443 throw trap_illegal_instruction();
444 }
445
446 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
447 {
448 throw trap_illegal_instruction();
449 }
450
451 insn_func_t processor_t::decode_insn(insn_t insn)
452 {
453 // look up opcode in hash table
454 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
455 insn_desc_t desc = opcode_cache[idx];
456
457 if (unlikely(insn.bits() != desc.match)) {
458 // fall back to linear search
459 insn_desc_t* p = &instructions[0];
460 while ((insn.bits() & p->mask) != p->match)
461 p++;
462 desc = *p;
463
464 if (p->mask != 0 && p > &instructions[0]) {
465 if (p->match != (p-1)->match && p->match != (p+1)->match) {
466 // move to front of opcode list to reduce miss penalty
467 while (--p >= &instructions[0])
468 *(p+1) = *p;
469 instructions[0] = desc;
470 }
471 }
472
473 opcode_cache[idx] = desc;
474 opcode_cache[idx].match = insn.bits();
475 }
476
477 return xlen == 64 ? desc.rv64 : desc.rv32;
478 }
479
480 void processor_t::register_insn(insn_desc_t desc)
481 {
482 instructions.push_back(desc);
483 }
484
485 void processor_t::build_opcode_map()
486 {
487 struct cmp {
488 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
489 if (lhs.match == rhs.match)
490 return lhs.mask > rhs.mask;
491 return lhs.match > rhs.match;
492 }
493 };
494 std::sort(instructions.begin(), instructions.end(), cmp());
495
496 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
497 opcode_cache[i] = {1, 0, &illegal_instruction, &illegal_instruction};
498 }
499
500 void processor_t::register_extension(extension_t* x)
501 {
502 for (auto insn : x->get_instructions())
503 register_insn(insn);
504 build_opcode_map();
505 for (auto disasm_insn : x->get_disasms())
506 disassembler->add_insn(disasm_insn);
507 if (ext != NULL)
508 throw std::logic_error("only one extension may be registered");
509 ext = x;
510 x->set_processor(this);
511 }
512
513 void processor_t::register_base_instructions()
514 {
515 #define DECLARE_INSN(name, match, mask) \
516 insn_bits_t name##_match = (match), name##_mask = (mask);
517 #include "encoding.h"
518 #undef DECLARE_INSN
519
520 #define DEFINE_INSN(name) \
521 REGISTER_INSN(this, name, name##_match, name##_mask)
522 #include "insn_list.h"
523 #undef DEFINE_INSN
524
525 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
526 build_opcode_map();
527 }
528
529 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
530 {
531 return false;
532 }
533
534 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
535 {
536 switch (addr)
537 {
538 case 0:
539 state.mip &= ~MIP_MSIP;
540 if (bytes[0] & 1)
541 state.mip |= MIP_MSIP;
542 return true;
543
544 default:
545 return false;
546 }
547 }