Exceptions in Debug Mode, stay in Debug Mode.
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "htif.h"
10 #include "disasm.h"
11 #include "gdbserver.h"
12 #include <cinttypes>
13 #include <cmath>
14 #include <cstdlib>
15 #include <iostream>
16 #include <assert.h>
17 #include <limits.h>
18 #include <stdexcept>
19 #include <algorithm>
20
21 #undef STATE
22 #define STATE state
23
24 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id)
25 : debug(false), sim(sim), ext(NULL), disassembler(new disassembler_t),
26 id(id), run(false)
27 {
28 parse_isa_string(isa);
29
30 mmu = new mmu_t(sim, this);
31
32 reset(true);
33
34 register_base_instructions();
35 }
36
37 processor_t::~processor_t()
38 {
39 #ifdef RISCV_ENABLE_HISTOGRAM
40 if (histogram_enabled)
41 {
42 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
43 for (auto it : pc_histogram)
44 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
45 }
46 #endif
47
48 delete mmu;
49 delete disassembler;
50 }
51
52 static void bad_isa_string(const char* isa)
53 {
54 fprintf(stderr, "error: bad --isa option %s\n", isa);
55 abort();
56 }
57
58 void processor_t::parse_isa_string(const char* str)
59 {
60 std::string lowercase, tmp;
61 for (const char *r = str; *r; r++)
62 lowercase += std::tolower(*r);
63
64 const char* p = lowercase.c_str();
65 const char* all_subsets = "imafdc";
66
67 max_xlen = 64;
68 isa = reg_t(2) << 62;
69
70 if (strncmp(p, "rv32", 4) == 0)
71 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
72 else if (strncmp(p, "rv64", 4) == 0)
73 p += 4;
74 else if (strncmp(p, "rv", 2) == 0)
75 p += 2;
76
77 if (!*p) {
78 p = all_subsets;
79 } else if (*p == 'g') { // treat "G" as "IMAFD"
80 tmp = std::string("imafd") + (p+1);
81 p = &tmp[0];
82 } else if (*p != 'i') {
83 bad_isa_string(str);
84 }
85
86 isa_string = "rv" + std::to_string(max_xlen) + p;
87 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112 }
113
114 void state_t::reset()
115 {
116 memset(this, 0, sizeof(*this));
117 prv = PRV_M;
118 pc = DEFAULT_RSTVEC;
119 mtvec = DEFAULT_MTVEC;
120 load_reservation = -1;
121 }
122
123 void processor_t::set_debug(bool value)
124 {
125 debug = value;
126 if (ext)
127 ext->set_debug(value);
128 }
129
130 void processor_t::set_histogram(bool value)
131 {
132 histogram_enabled = value;
133 #ifndef RISCV_ENABLE_HISTOGRAM
134 if (value) {
135 fprintf(stderr, "PC Histogram support has not been properly enabled;");
136 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
137 }
138 #endif
139 }
140
141 void processor_t::reset(bool value)
142 {
143 if (run == !value)
144 return;
145 run = !value;
146
147 state.reset();
148 set_csr(CSR_MSTATUS, state.mstatus);
149
150 if (ext)
151 ext->reset(); // reset the extension
152 }
153
154 void processor_t::raise_interrupt(reg_t which)
155 {
156 throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
157 }
158
159 static int ctz(reg_t val)
160 {
161 int res = 0;
162 if (val)
163 while ((val & 1) == 0)
164 val >>= 1, res++;
165 return res;
166 }
167
168 void processor_t::take_interrupt()
169 {
170 reg_t pending_interrupts = state.mip & state.mie;
171
172 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
173 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
174 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
175
176 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
177 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
178 enabled_interrupts |= pending_interrupts & state.mideleg & -s_enabled;
179
180 if (enabled_interrupts)
181 raise_interrupt(ctz(enabled_interrupts));
182 }
183
184 static bool validate_priv(reg_t priv)
185 {
186 return priv == PRV_U || priv == PRV_S || priv == PRV_M;
187 }
188
189 void processor_t::set_privilege(reg_t prv)
190 {
191 assert(validate_priv(prv));
192 mmu->flush_tlb();
193 state.prv = prv;
194 }
195
196 void processor_t::enter_debug_mode(uint8_t cause)
197 {
198 fprintf(stderr, "enter_debug_mode(%d)\n", cause);
199 state.dcsr.cause = cause;
200 state.dcsr.prv = state.prv;
201 state.prv = PRV_M;
202 state.dpc = state.pc;
203 state.pc = DEBUG_ROM_START;
204 debug = true; // TODO
205 }
206
207 void processor_t::take_trap(trap_t& t, reg_t epc)
208 {
209 if (debug)
210 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
211 id, t.name(), epc);
212
213 if (t.cause() == CAUSE_BREAKPOINT &&
214 sim->gdbserver && sim->gdbserver->connected()) {
215 enter_debug_mode(DCSR_CAUSE_SWBP);
216 return;
217 }
218
219 // by default, trap to M-mode, unless delegated to S-mode
220 reg_t bit = t.cause();
221 reg_t deleg = state.medeleg;
222 if (bit & ((reg_t)1 << (max_xlen-1)))
223 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
224 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
225 // handle the trap in S-mode
226 state.pc = state.stvec;
227 state.scause = t.cause();
228 state.sepc = epc;
229 if (t.has_badaddr())
230 state.sbadaddr = t.get_badaddr();
231
232 reg_t s = state.mstatus;
233 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
234 s = set_field(s, MSTATUS_SPP, state.prv);
235 s = set_field(s, MSTATUS_SIE, 0);
236 set_csr(CSR_MSTATUS, s);
237 set_privilege(PRV_S);
238 } else {
239 if (state.dcsr.cause) {
240 state.pc = DEBUG_ROM_EXCEPTION;
241 } else {
242 state.pc = state.mtvec;
243 }
244 state.mcause = t.cause();
245 state.mepc = epc;
246 if (t.has_badaddr())
247 state.mbadaddr = t.get_badaddr();
248
249 reg_t s = state.mstatus;
250 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
251 s = set_field(s, MSTATUS_MPP, state.prv);
252 s = set_field(s, MSTATUS_MIE, 0);
253 set_csr(CSR_MSTATUS, s);
254 set_privilege(PRV_M);
255 }
256
257 yield_load_reservation();
258 }
259
260 void processor_t::disasm(insn_t insn)
261 {
262 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
263 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
264 id, state.pc, bits, disassembler->disassemble(insn).c_str());
265 }
266
267 static bool validate_vm(int max_xlen, reg_t vm)
268 {
269 if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
270 return true;
271 if (max_xlen == 32 && vm == VM_SV32)
272 return true;
273 return vm == VM_MBARE;
274 }
275
276 void processor_t::set_csr(int which, reg_t val)
277 {
278 val = zext_xlen(val);
279 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
280 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
281 switch (which)
282 {
283 case CSR_FFLAGS:
284 dirty_fp_state;
285 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
286 break;
287 case CSR_FRM:
288 dirty_fp_state;
289 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
290 break;
291 case CSR_FCSR:
292 dirty_fp_state;
293 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
294 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
295 break;
296 case CSR_MSTATUS: {
297 if ((val ^ state.mstatus) &
298 (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM))
299 mmu->flush_tlb();
300
301 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
302 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
303 | (ext ? MSTATUS_XS : 0);
304
305 if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
306 mask |= MSTATUS_VM;
307 if (validate_priv(get_field(val, MSTATUS_MPP)))
308 mask |= MSTATUS_MPP;
309
310 state.mstatus = (state.mstatus & ~mask) | (val & mask);
311
312 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
313 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
314 if (max_xlen == 32)
315 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
316 else
317 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
318
319 // spike supports the notion of xlen < max_xlen, but current priv spec
320 // doesn't provide a mechanism to run RV32 software on an RV64 machine
321 xlen = max_xlen;
322 break;
323 }
324 case CSR_MIP: {
325 reg_t mask = MIP_SSIP | MIP_STIP;
326 state.mip = (state.mip & ~mask) | (val & mask);
327 break;
328 }
329 case CSR_MIE:
330 state.mie = (state.mie & ~all_ints) | (val & all_ints);
331 break;
332 case CSR_MIDELEG:
333 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
334 break;
335 case CSR_MEDELEG: {
336 reg_t mask = 0;
337 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
338 #include "encoding.h"
339 #undef DECLARE_CAUSE
340 state.medeleg = (state.medeleg & ~mask) | (val & mask);
341 break;
342 }
343 case CSR_MUCOUNTEREN:
344 state.mucounteren = val & 7;
345 break;
346 case CSR_MSCOUNTEREN:
347 state.mscounteren = val & 7;
348 break;
349 case CSR_SSTATUS: {
350 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
351 | SSTATUS_XS | SSTATUS_PUM;
352 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
353 }
354 case CSR_SIP:
355 return set_csr(CSR_MIP,
356 (state.mip & ~state.mideleg) | (val & state.mideleg));
357 case CSR_SIE:
358 return set_csr(CSR_MIE,
359 (state.mie & ~state.mideleg) | (val & state.mideleg));
360 case CSR_SEPC: state.sepc = val; break;
361 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
362 case CSR_SPTBR: state.sptbr = val; break;
363 case CSR_SSCRATCH: state.sscratch = val; break;
364 case CSR_SCAUSE: state.scause = val; break;
365 case CSR_SBADADDR: state.sbadaddr = val; break;
366 case CSR_MEPC: state.mepc = val; break;
367 case CSR_MTVEC: state.mtvec = val >> 2 << 2; break;
368 case CSR_MSCRATCH: state.mscratch = val; break;
369 case CSR_MCAUSE: state.mcause = val; break;
370 case CSR_MBADADDR: state.mbadaddr = val; break;
371 case DCSR_ADDRESS:
372 // TODO: Use get_field style
373 state.dcsr.prv = (val & DCSR_PRV_MASK) >> DCSR_PRV_OFFSET;
374 state.dcsr.step = (val & DCSR_STEP_MASK) >> DCSR_STEP_OFFSET;
375 // TODO: ndreset and fullreset
376 state.dcsr.ebreakm = (val & DCSR_EBREAKM_MASK) >> DCSR_EBREAKM_OFFSET;
377 state.dcsr.ebreakh = (val & DCSR_EBREAKH_MASK) >> DCSR_EBREAKH_OFFSET;
378 state.dcsr.ebreaks = (val & DCSR_EBREAKS_MASK) >> DCSR_EBREAKS_OFFSET;
379 state.dcsr.ebreaku = (val & DCSR_EBREAKU_MASK) >> DCSR_EBREAKU_OFFSET;
380 state.dcsr.halt = (val & DCSR_HALT_MASK) >> DCSR_HALT_OFFSET;
381 break;
382 case DPC_ADDRESS:
383 state.dpc = val;
384 break;
385 case DSCRATCH_ADDRESS:
386 state.dscratch = val;
387 break;
388 }
389 }
390
391 reg_t processor_t::get_csr(int which)
392 {
393 switch (which)
394 {
395 case CSR_FFLAGS:
396 require_fp;
397 if (!supports_extension('F'))
398 break;
399 return state.fflags;
400 case CSR_FRM:
401 require_fp;
402 if (!supports_extension('F'))
403 break;
404 return state.frm;
405 case CSR_FCSR:
406 require_fp;
407 if (!supports_extension('F'))
408 break;
409 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
410 case CSR_TIME:
411 case CSR_INSTRET:
412 case CSR_CYCLE:
413 if ((state.mucounteren >> (which & (xlen-1))) & 1)
414 return get_csr(which + (CSR_MCYCLE - CSR_CYCLE));
415 break;
416 case CSR_STIME:
417 case CSR_SINSTRET:
418 case CSR_SCYCLE:
419 if ((state.mscounteren >> (which & (xlen-1))) & 1)
420 return get_csr(which + (CSR_MCYCLE - CSR_SCYCLE));
421 break;
422 case CSR_MUCOUNTEREN: return state.mucounteren;
423 case CSR_MSCOUNTEREN: return state.mscounteren;
424 case CSR_MUCYCLE_DELTA: return 0;
425 case CSR_MUTIME_DELTA: return 0;
426 case CSR_MUINSTRET_DELTA: return 0;
427 case CSR_MSCYCLE_DELTA: return 0;
428 case CSR_MSTIME_DELTA: return 0;
429 case CSR_MSINSTRET_DELTA: return 0;
430 case CSR_MUCYCLE_DELTAH: if (xlen > 32) break; else return 0;
431 case CSR_MUTIME_DELTAH: if (xlen > 32) break; else return 0;
432 case CSR_MUINSTRET_DELTAH: if (xlen > 32) break; else return 0;
433 case CSR_MSCYCLE_DELTAH: if (xlen > 32) break; else return 0;
434 case CSR_MSTIME_DELTAH: if (xlen > 32) break; else return 0;
435 case CSR_MSINSTRET_DELTAH: if (xlen > 32) break; else return 0;
436 case CSR_MCYCLE: return state.minstret;
437 case CSR_MINSTRET: return state.minstret;
438 case CSR_MCYCLEH: if (xlen > 32) break; else return state.minstret >> 32;
439 case CSR_MINSTRETH: if (xlen > 32) break; else return state.minstret >> 32;
440 case CSR_SSTATUS: {
441 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
442 | SSTATUS_XS | SSTATUS_PUM;
443 reg_t sstatus = state.mstatus & mask;
444 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
445 (sstatus & SSTATUS_XS) == SSTATUS_XS)
446 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
447 return sstatus;
448 }
449 case CSR_SIP: return state.mip & state.mideleg;
450 case CSR_SIE: return state.mie & state.mideleg;
451 case CSR_SEPC: return state.sepc;
452 case CSR_SBADADDR: return state.sbadaddr;
453 case CSR_STVEC: return state.stvec;
454 case CSR_SCAUSE:
455 if (max_xlen > xlen)
456 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
457 return state.scause;
458 case CSR_SPTBR: return state.sptbr;
459 case CSR_SASID: return 0;
460 case CSR_SSCRATCH: return state.sscratch;
461 case CSR_MSTATUS: return state.mstatus;
462 case CSR_MIP: return state.mip;
463 case CSR_MIE: return state.mie;
464 case CSR_MEPC: return state.mepc;
465 case CSR_MSCRATCH: return state.mscratch;
466 case CSR_MCAUSE: return state.mcause;
467 case CSR_MBADADDR: return state.mbadaddr;
468 case CSR_MISA: return isa;
469 case CSR_MARCHID: return 0;
470 case CSR_MIMPID: return 0;
471 case CSR_MVENDORID: return 0;
472 case CSR_MHARTID: return id;
473 case CSR_MTVEC: return state.mtvec;
474 case CSR_MEDELEG: return state.medeleg;
475 case CSR_MIDELEG: return state.mideleg;
476 case DCSR_ADDRESS:
477 {
478 uint32_t value =
479 (1 << DCSR_XDEBUGVER_OFFSET) |
480 (0 << DCSR_HWBPCOUNT_OFFSET) |
481 (0 << DCSR_NDRESET_OFFSET) |
482 (0 << DCSR_FULLRESET_OFFSET) |
483 (state.dcsr.prv << DCSR_PRV_OFFSET) |
484 (state.dcsr.step << DCSR_STEP_OFFSET) |
485 (sim->debug_module.get_interrupt(id) << DCSR_DEBUGINT_OFFSET) |
486 (0 << DCSR_STOPCYCLE_OFFSET) |
487 (0 << DCSR_STOPTIME_OFFSET) |
488 (state.dcsr.ebreakm << DCSR_EBREAKM_OFFSET) |
489 (state.dcsr.ebreakh << DCSR_EBREAKH_OFFSET) |
490 (state.dcsr.ebreaks << DCSR_EBREAKS_OFFSET) |
491 (state.dcsr.ebreaku << DCSR_EBREAKU_OFFSET) |
492 (state.dcsr.halt << DCSR_HALT_OFFSET) |
493 (state.dcsr.cause << DCSR_CAUSE_OFFSET);
494 return value;
495 }
496 case DPC_ADDRESS:
497 return state.dpc;
498 case DSCRATCH_ADDRESS:
499 return state.dscratch;
500 }
501 throw trap_illegal_instruction();
502 }
503
504 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
505 {
506 throw trap_illegal_instruction();
507 }
508
509 insn_func_t processor_t::decode_insn(insn_t insn)
510 {
511 // look up opcode in hash table
512 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
513 insn_desc_t desc = opcode_cache[idx];
514
515 if (unlikely(insn.bits() != desc.match)) {
516 // fall back to linear search
517 insn_desc_t* p = &instructions[0];
518 while ((insn.bits() & p->mask) != p->match)
519 p++;
520 desc = *p;
521
522 if (p->mask != 0 && p > &instructions[0]) {
523 if (p->match != (p-1)->match && p->match != (p+1)->match) {
524 // move to front of opcode list to reduce miss penalty
525 while (--p >= &instructions[0])
526 *(p+1) = *p;
527 instructions[0] = desc;
528 }
529 }
530
531 opcode_cache[idx] = desc;
532 opcode_cache[idx].match = insn.bits();
533 }
534
535 return xlen == 64 ? desc.rv64 : desc.rv32;
536 }
537
538 void processor_t::register_insn(insn_desc_t desc)
539 {
540 instructions.push_back(desc);
541 }
542
543 void processor_t::build_opcode_map()
544 {
545 struct cmp {
546 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
547 if (lhs.match == rhs.match)
548 return lhs.mask > rhs.mask;
549 return lhs.match > rhs.match;
550 }
551 };
552 std::sort(instructions.begin(), instructions.end(), cmp());
553
554 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
555 opcode_cache[i] = {1, 0, &illegal_instruction, &illegal_instruction};
556 }
557
558 void processor_t::register_extension(extension_t* x)
559 {
560 for (auto insn : x->get_instructions())
561 register_insn(insn);
562 build_opcode_map();
563 for (auto disasm_insn : x->get_disasms())
564 disassembler->add_insn(disasm_insn);
565 if (ext != NULL)
566 throw std::logic_error("only one extension may be registered");
567 ext = x;
568 x->set_processor(this);
569 }
570
571 void processor_t::register_base_instructions()
572 {
573 #define DECLARE_INSN(name, match, mask) \
574 insn_bits_t name##_match = (match), name##_mask = (mask);
575 #include "encoding.h"
576 #undef DECLARE_INSN
577
578 #define DEFINE_INSN(name) \
579 REGISTER_INSN(this, name, name##_match, name##_mask)
580 #include "insn_list.h"
581 #undef DEFINE_INSN
582
583 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
584 build_opcode_map();
585 }
586
587 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
588 {
589 return false;
590 }
591
592 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
593 {
594 switch (addr)
595 {
596 case 0:
597 state.mip &= ~MIP_MSIP;
598 if (bytes[0] & 1)
599 state.mip |= MIP_MSIP;
600 return true;
601
602 default:
603 return false;
604 }
605 }