Merge remote-tracking branch 'origin/priv-1.10' into HEAD
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112
113 max_isa = isa;
114 }
115
116 void state_t::reset()
117 {
118 memset(this, 0, sizeof(*this));
119 prv = PRV_M;
120 pc = DEFAULT_RSTVEC;
121 load_reservation = -1;
122 tselect = 0;
123 for (unsigned int i = 0; i < num_triggers; i++)
124 mcontrol[i].type = 2;
125 }
126
127 void processor_t::set_debug(bool value)
128 {
129 debug = value;
130 if (ext)
131 ext->set_debug(value);
132 }
133
134 void processor_t::set_histogram(bool value)
135 {
136 histogram_enabled = value;
137 #ifndef RISCV_ENABLE_HISTOGRAM
138 if (value) {
139 fprintf(stderr, "PC Histogram support has not been properly enabled;");
140 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
141 }
142 #endif
143 }
144
145 void processor_t::reset()
146 {
147 state.reset();
148 state.dcsr.halt = halt_on_reset;
149 halt_on_reset = false;
150 set_csr(CSR_MSTATUS, state.mstatus);
151
152 if (ext)
153 ext->reset(); // reset the extension
154 }
155
156 // Count number of contiguous 0 bits starting from the LSB.
157 static int ctz(reg_t val)
158 {
159 int res = 0;
160 if (val)
161 while ((val & 1) == 0)
162 val >>= 1, res++;
163 return res;
164 }
165
166 void processor_t::take_interrupt(reg_t pending_interrupts)
167 {
168 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
169 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
170 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
171
172 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
173 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
174 if (enabled_interrupts == 0)
175 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
176
177 if (enabled_interrupts)
178 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
179 }
180
181 void processor_t::set_privilege(reg_t prv)
182 {
183 assert(prv <= PRV_M);
184 if (prv == PRV_H)
185 prv = PRV_U;
186 mmu->flush_tlb();
187 state.prv = prv;
188 }
189
190 void processor_t::enter_debug_mode(uint8_t cause)
191 {
192 state.dcsr.cause = cause;
193 state.dcsr.prv = state.prv;
194 set_privilege(PRV_M);
195 state.dpc = state.pc;
196 state.pc = debug_rom_entry();
197 }
198
199 void processor_t::take_trap(trap_t& t, reg_t epc)
200 {
201 if (debug) {
202 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
203 id, t.name(), epc);
204 if (t.has_badaddr())
205 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
206 t.get_badaddr());
207 }
208
209 if (state.dcsr.cause) {
210 if (t.cause() == CAUSE_BREAKPOINT) {
211 state.pc = debug_rom_entry();
212 } else {
213 state.pc = DEBUG_ROM_EXCEPTION;
214 }
215 return;
216 }
217
218 if (t.cause() == CAUSE_BREAKPOINT && (
219 (state.prv == PRV_M && state.dcsr.ebreakm) ||
220 (state.prv == PRV_H && state.dcsr.ebreakh) ||
221 (state.prv == PRV_S && state.dcsr.ebreaks) ||
222 (state.prv == PRV_U && state.dcsr.ebreaku))) {
223 enter_debug_mode(DCSR_CAUSE_SWBP);
224 return;
225 }
226
227 // by default, trap to M-mode, unless delegated to S-mode
228 reg_t bit = t.cause();
229 reg_t deleg = state.medeleg;
230 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
231 if (interrupt)
232 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
233 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
234 // handle the trap in S-mode
235 state.pc = state.stvec;
236 state.scause = t.cause();
237 state.sepc = epc;
238 if (t.has_badaddr())
239 state.sbadaddr = t.get_badaddr();
240
241 reg_t s = state.mstatus;
242 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
243 s = set_field(s, MSTATUS_SPP, state.prv);
244 s = set_field(s, MSTATUS_SIE, 0);
245 set_csr(CSR_MSTATUS, s);
246 set_privilege(PRV_S);
247 } else {
248 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
249 state.pc = (state.mtvec & ~(reg_t)1) + vector;
250 state.mepc = epc;
251 state.mcause = t.cause();
252 if (t.has_badaddr())
253 state.mbadaddr = t.get_badaddr();
254
255 reg_t s = state.mstatus;
256 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
257 s = set_field(s, MSTATUS_MPP, state.prv);
258 s = set_field(s, MSTATUS_MIE, 0);
259 set_csr(CSR_MSTATUS, s);
260 set_privilege(PRV_M);
261 }
262
263 yield_load_reservation();
264 }
265
266 void processor_t::disasm(insn_t insn)
267 {
268 static uint64_t last_pc = 1, last_bits;
269 static uint64_t executions = 1;
270
271 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
272 if (last_pc != state.pc || last_bits != bits) {
273 if (executions != 1) {
274 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
275 }
276
277 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
278 id, state.pc, bits, disassembler->disassemble(insn).c_str());
279 last_pc = state.pc;
280 last_bits = bits;
281 executions = 1;
282 } else {
283 executions++;
284 }
285 }
286
287 int processor_t::paddr_bits()
288 {
289 assert(xlen == max_xlen);
290 return max_xlen == 64 ? 50 : 34;
291 }
292
293 void processor_t::set_csr(int which, reg_t val)
294 {
295 val = zext_xlen(val);
296 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
297 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
298 switch (which)
299 {
300 case CSR_FFLAGS:
301 dirty_fp_state;
302 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
303 break;
304 case CSR_FRM:
305 dirty_fp_state;
306 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
307 break;
308 case CSR_FCSR:
309 dirty_fp_state;
310 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
311 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
312 break;
313 case CSR_MSTATUS: {
314 if ((val ^ state.mstatus) &
315 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
316 mmu->flush_tlb();
317
318 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
319 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
320 | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
321 | MSTATUS_TSR | (ext ? MSTATUS_XS : 0);
322
323 state.mstatus = (state.mstatus & ~mask) | (val & mask);
324
325 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
326 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
327 if (max_xlen == 32)
328 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
329 else
330 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
331
332 // spike supports the notion of xlen < max_xlen, but current priv spec
333 // doesn't provide a mechanism to run RV32 software on an RV64 machine
334 xlen = max_xlen;
335 break;
336 }
337 case CSR_MIP: {
338 reg_t mask = MIP_SSIP | MIP_STIP;
339 state.mip = (state.mip & ~mask) | (val & mask);
340 break;
341 }
342 case CSR_MIE:
343 state.mie = (state.mie & ~all_ints) | (val & all_ints);
344 break;
345 case CSR_MIDELEG:
346 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
347 break;
348 case CSR_MEDELEG: {
349 reg_t mask = 0;
350 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
351 #include "encoding.h"
352 #undef DECLARE_CAUSE
353 state.medeleg = (state.medeleg & ~mask) | (val & mask);
354 break;
355 }
356 case CSR_MINSTRET:
357 case CSR_MCYCLE:
358 if (xlen == 32)
359 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
360 else
361 state.minstret = val;
362 break;
363 case CSR_MINSTRETH:
364 case CSR_MCYCLEH:
365 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
366 break;
367 case CSR_SCOUNTEREN:
368 state.scounteren = val;
369 break;
370 case CSR_MCOUNTEREN:
371 state.mcounteren = val;
372 break;
373 case CSR_SSTATUS: {
374 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
375 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
376 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
377 }
378 case CSR_SIP: {
379 reg_t mask = MIP_SSIP & state.mideleg;
380 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
381 }
382 case CSR_SIE:
383 return set_csr(CSR_MIE,
384 (state.mie & ~state.mideleg) | (val & state.mideleg));
385 case CSR_SPTBR: {
386 mmu->flush_tlb();
387 if (max_xlen == 32)
388 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
389 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
390 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
391 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
392 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
393 break;
394 }
395 case CSR_SEPC: state.sepc = val; break;
396 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
397 case CSR_SSCRATCH: state.sscratch = val; break;
398 case CSR_SCAUSE: state.scause = val; break;
399 case CSR_SBADADDR: state.sbadaddr = val; break;
400 case CSR_MEPC: state.mepc = val; break;
401 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
402 case CSR_MSCRATCH: state.mscratch = val; break;
403 case CSR_MCAUSE: state.mcause = val; break;
404 case CSR_MBADADDR: state.mbadaddr = val; break;
405 case CSR_MISA: {
406 if (!(val & (1L << ('F' - 'A'))))
407 val &= ~(1L << ('D' - 'A'));
408
409 // allow MAFDC bits in MISA to be modified
410 reg_t mask = 0;
411 mask |= 1L << ('M' - 'A');
412 mask |= 1L << ('A' - 'A');
413 mask |= 1L << ('F' - 'A');
414 mask |= 1L << ('D' - 'A');
415 mask |= 1L << ('C' - 'A');
416 mask &= max_isa;
417
418 isa = (val & mask) | (isa & ~mask);
419 break;
420 }
421 case CSR_TSELECT:
422 if (val < state.num_triggers) {
423 state.tselect = val;
424 }
425 break;
426 case CSR_TDATA1:
427 {
428 mcontrol_t *mc = &state.mcontrol[state.tselect];
429 if (mc->dmode && !state.dcsr.cause) {
430 break;
431 }
432 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
433 mc->select = get_field(val, MCONTROL_SELECT);
434 mc->timing = get_field(val, MCONTROL_TIMING);
435 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
436 mc->chain = get_field(val, MCONTROL_CHAIN);
437 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
438 mc->m = get_field(val, MCONTROL_M);
439 mc->h = get_field(val, MCONTROL_H);
440 mc->s = get_field(val, MCONTROL_S);
441 mc->u = get_field(val, MCONTROL_U);
442 mc->execute = get_field(val, MCONTROL_EXECUTE);
443 mc->store = get_field(val, MCONTROL_STORE);
444 mc->load = get_field(val, MCONTROL_LOAD);
445 // Assume we're here because of csrw.
446 if (mc->execute)
447 mc->timing = 0;
448 trigger_updated();
449 }
450 break;
451 case CSR_TDATA2:
452 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
453 break;
454 }
455 if (state.tselect < state.num_triggers) {
456 state.tdata2[state.tselect] = val;
457 }
458 break;
459 case CSR_DCSR:
460 state.dcsr.prv = get_field(val, DCSR_PRV);
461 state.dcsr.step = get_field(val, DCSR_STEP);
462 // TODO: ndreset and fullreset
463 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
464 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
465 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
466 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
467 state.dcsr.halt = get_field(val, DCSR_HALT);
468 break;
469 case CSR_DPC:
470 state.dpc = val;
471 break;
472 case CSR_DSCRATCH:
473 state.dscratch = val;
474 break;
475 }
476 }
477
478 reg_t processor_t::get_csr(int which)
479 {
480 uint32_t ctr_en = -1;
481 if (state.prv < PRV_M)
482 ctr_en &= state.mcounteren;
483 if (state.prv < PRV_S)
484 ctr_en &= state.scounteren;
485 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
486
487 if (ctr_ok) {
488 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
489 return 0;
490 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
491 return 0;
492 }
493 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
494 return 0;
495 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
496 return 0;
497 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
498 return 0;
499
500 switch (which)
501 {
502 case CSR_FFLAGS:
503 require_fp;
504 if (!supports_extension('F'))
505 break;
506 return state.fflags;
507 case CSR_FRM:
508 require_fp;
509 if (!supports_extension('F'))
510 break;
511 return state.frm;
512 case CSR_FCSR:
513 require_fp;
514 if (!supports_extension('F'))
515 break;
516 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
517 case CSR_INSTRET:
518 case CSR_CYCLE:
519 if (ctr_ok)
520 return state.minstret;
521 break;
522 case CSR_MINSTRET:
523 case CSR_MCYCLE:
524 return state.minstret;
525 case CSR_MINSTRETH:
526 case CSR_MCYCLEH:
527 if (xlen == 32)
528 return state.minstret >> 32;
529 break;
530 case CSR_SCOUNTEREN: return state.scounteren;
531 case CSR_MCOUNTEREN: return state.mcounteren;
532 case CSR_SSTATUS: {
533 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
534 | SSTATUS_XS | SSTATUS_SUM;
535 reg_t sstatus = state.mstatus & mask;
536 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
537 (sstatus & SSTATUS_XS) == SSTATUS_XS)
538 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
539 return sstatus;
540 }
541 case CSR_SIP: return state.mip & state.mideleg;
542 case CSR_SIE: return state.mie & state.mideleg;
543 case CSR_SEPC: return state.sepc;
544 case CSR_SBADADDR: return state.sbadaddr;
545 case CSR_STVEC: return state.stvec;
546 case CSR_SCAUSE:
547 if (max_xlen > xlen)
548 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
549 return state.scause;
550 case CSR_SPTBR:
551 if (get_field(state.mstatus, MSTATUS_TVM))
552 require_privilege(PRV_M);
553 return state.sptbr;
554 case CSR_SSCRATCH: return state.sscratch;
555 case CSR_MSTATUS: return state.mstatus;
556 case CSR_MIP: return state.mip;
557 case CSR_MIE: return state.mie;
558 case CSR_MEPC: return state.mepc;
559 case CSR_MSCRATCH: return state.mscratch;
560 case CSR_MCAUSE: return state.mcause;
561 case CSR_MBADADDR: return state.mbadaddr;
562 case CSR_MISA: return isa;
563 case CSR_MARCHID: return 0;
564 case CSR_MIMPID: return 0;
565 case CSR_MVENDORID: return 0;
566 case CSR_MHARTID: return id;
567 case CSR_MTVEC: return state.mtvec;
568 case CSR_MEDELEG: return state.medeleg;
569 case CSR_MIDELEG: return state.mideleg;
570 case CSR_TSELECT: return state.tselect;
571 case CSR_TDATA1:
572 if (state.tselect < state.num_triggers) {
573 reg_t v = 0;
574 mcontrol_t *mc = &state.mcontrol[state.tselect];
575 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
576 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
577 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
578 v = set_field(v, MCONTROL_SELECT, mc->select);
579 v = set_field(v, MCONTROL_TIMING, mc->timing);
580 v = set_field(v, MCONTROL_ACTION, mc->action);
581 v = set_field(v, MCONTROL_CHAIN, mc->chain);
582 v = set_field(v, MCONTROL_MATCH, mc->match);
583 v = set_field(v, MCONTROL_M, mc->m);
584 v = set_field(v, MCONTROL_H, mc->h);
585 v = set_field(v, MCONTROL_S, mc->s);
586 v = set_field(v, MCONTROL_U, mc->u);
587 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
588 v = set_field(v, MCONTROL_STORE, mc->store);
589 v = set_field(v, MCONTROL_LOAD, mc->load);
590 return v;
591 } else {
592 return 0;
593 }
594 break;
595 case CSR_TDATA2:
596 if (state.tselect < state.num_triggers) {
597 return state.tdata2[state.tselect];
598 } else {
599 return 0;
600 }
601 break;
602 case CSR_TDATA3: return 0;
603 case CSR_DCSR:
604 {
605 uint32_t v = 0;
606 v = set_field(v, DCSR_XDEBUGVER, 1);
607 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
608 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
609 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
610 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
611 v = set_field(v, DCSR_STOPCYCLE, 0);
612 v = set_field(v, DCSR_STOPTIME, 0);
613 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
614 v = set_field(v, DCSR_STEP, state.dcsr.step);
615 v = set_field(v, DCSR_PRV, state.dcsr.prv);
616 return v;
617 }
618 case CSR_DPC:
619 return state.dpc;
620 case CSR_DSCRATCH:
621 return state.dscratch;
622 }
623 throw trap_illegal_instruction(0);
624 }
625
626 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
627 {
628 throw trap_illegal_instruction(0);
629 }
630
631 insn_func_t processor_t::decode_insn(insn_t insn)
632 {
633 // look up opcode in hash table
634 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
635 insn_desc_t desc = opcode_cache[idx];
636
637 if (unlikely(insn.bits() != desc.match)) {
638 // fall back to linear search
639 insn_desc_t* p = &instructions[0];
640 while ((insn.bits() & p->mask) != p->match)
641 p++;
642 desc = *p;
643
644 if (p->mask != 0 && p > &instructions[0]) {
645 if (p->match != (p-1)->match && p->match != (p+1)->match) {
646 // move to front of opcode list to reduce miss penalty
647 while (--p >= &instructions[0])
648 *(p+1) = *p;
649 instructions[0] = desc;
650 }
651 }
652
653 opcode_cache[idx] = desc;
654 opcode_cache[idx].match = insn.bits();
655 }
656
657 return xlen == 64 ? desc.rv64 : desc.rv32;
658 }
659
660 void processor_t::register_insn(insn_desc_t desc)
661 {
662 instructions.push_back(desc);
663 }
664
665 void processor_t::build_opcode_map()
666 {
667 struct cmp {
668 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
669 if (lhs.match == rhs.match)
670 return lhs.mask > rhs.mask;
671 return lhs.match > rhs.match;
672 }
673 };
674 std::sort(instructions.begin(), instructions.end(), cmp());
675
676 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
677 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
678 }
679
680 void processor_t::register_extension(extension_t* x)
681 {
682 for (auto insn : x->get_instructions())
683 register_insn(insn);
684 build_opcode_map();
685 for (auto disasm_insn : x->get_disasms())
686 disassembler->add_insn(disasm_insn);
687 if (ext != NULL)
688 throw std::logic_error("only one extension may be registered");
689 ext = x;
690 x->set_processor(this);
691 }
692
693 void processor_t::register_base_instructions()
694 {
695 #define DECLARE_INSN(name, match, mask) \
696 insn_bits_t name##_match = (match), name##_mask = (mask);
697 #include "encoding.h"
698 #undef DECLARE_INSN
699
700 #define DEFINE_INSN(name) \
701 REGISTER_INSN(this, name, name##_match, name##_mask)
702 #include "insn_list.h"
703 #undef DEFINE_INSN
704
705 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
706 build_opcode_map();
707 }
708
709 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
710 {
711 switch (addr)
712 {
713 case 0:
714 if (len <= 4) {
715 memset(bytes, 0, len);
716 bytes[0] = get_field(state.mip, MIP_MSIP);
717 return true;
718 }
719 break;
720 }
721
722 return false;
723 }
724
725 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
726 {
727 switch (addr)
728 {
729 case 0:
730 if (len <= 4) {
731 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
732 return true;
733 }
734 break;
735 }
736
737 return false;
738 }
739
740 void processor_t::trigger_updated()
741 {
742 mmu->flush_tlb();
743 mmu->check_triggers_fetch = false;
744 mmu->check_triggers_load = false;
745 mmu->check_triggers_store = false;
746
747 for (unsigned i = 0; i < state.num_triggers; i++) {
748 if (state.mcontrol[i].execute) {
749 mmu->check_triggers_fetch = true;
750 }
751 if (state.mcontrol[i].load) {
752 mmu->check_triggers_load = true;
753 }
754 if (state.mcontrol[i].store) {
755 mmu->check_triggers_store = true;
756 }
757 }
758 }