debug: Checkpoint which somewhat works with OpenOCD v13, but still has some bugs.
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112
113 max_isa = isa;
114 }
115
116 void state_t::reset()
117 {
118 memset(this, 0, sizeof(*this));
119 prv = PRV_M;
120 pc = DEFAULT_RSTVEC;
121 load_reservation = -1;
122 tselect = 0;
123 for (unsigned int i = 0; i < num_triggers; i++)
124 mcontrol[i].type = 2;
125 }
126
127 void processor_t::set_debug(bool value)
128 {
129 debug = value;
130 if (ext)
131 ext->set_debug(value);
132 }
133
134 void processor_t::set_histogram(bool value)
135 {
136 histogram_enabled = value;
137 #ifndef RISCV_ENABLE_HISTOGRAM
138 if (value) {
139 fprintf(stderr, "PC Histogram support has not been properly enabled;");
140 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
141 }
142 #endif
143 }
144
145 void processor_t::reset()
146 {
147 state.reset();
148 state.dcsr.halt = halt_on_reset;
149 halt_on_reset = false;
150 set_csr(CSR_MSTATUS, state.mstatus);
151
152 if (ext)
153 ext->reset(); // reset the extension
154 }
155
156 // Count number of contiguous 0 bits starting from the LSB.
157 static int ctz(reg_t val)
158 {
159 int res = 0;
160 if (val)
161 while ((val & 1) == 0)
162 val >>= 1, res++;
163 return res;
164 }
165
166 void processor_t::take_interrupt(reg_t pending_interrupts)
167 {
168 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
169 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
170 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
171
172 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
173 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
174 if (enabled_interrupts == 0)
175 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
176
177 if (enabled_interrupts)
178 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
179 }
180
181 void processor_t::set_privilege(reg_t prv)
182 {
183 assert(prv <= PRV_M);
184 if (prv == PRV_H)
185 prv = PRV_U;
186 mmu->flush_tlb();
187 state.prv = prv;
188 }
189
190 void processor_t::enter_debug_mode(uint8_t cause)
191 {
192 fprintf(stderr, "Entering debug mode because of cause %d", cause);
193 state.dcsr.cause = cause;
194 state.dcsr.prv = state.prv;
195 set_privilege(PRV_M);
196 state.dpc = state.pc;
197 state.pc = debug_rom_entry();
198 }
199
200 void processor_t::take_trap(trap_t& t, reg_t epc)
201 {
202 if (debug) {
203 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
204 id, t.name(), epc);
205 if (t.has_badaddr())
206 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
207 t.get_badaddr());
208 }
209
210 if (state.dcsr.cause) {
211 if (t.cause() == CAUSE_BREAKPOINT) {
212 state.pc = debug_rom_entry();
213 } else {
214 state.pc = DEBUG_ROM_TVEC;
215 }
216 return;
217 }
218
219 if (t.cause() == CAUSE_BREAKPOINT && (
220 (state.prv == PRV_M && state.dcsr.ebreakm) ||
221 (state.prv == PRV_H && state.dcsr.ebreakh) ||
222 (state.prv == PRV_S && state.dcsr.ebreaks) ||
223 (state.prv == PRV_U && state.dcsr.ebreaku))) {
224 enter_debug_mode(DCSR_CAUSE_SWBP);
225 return;
226 }
227
228 // by default, trap to M-mode, unless delegated to S-mode
229 reg_t bit = t.cause();
230 reg_t deleg = state.medeleg;
231 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
232 if (interrupt)
233 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
234 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
235 // handle the trap in S-mode
236 state.pc = state.stvec;
237 state.scause = t.cause();
238 state.sepc = epc;
239 if (t.has_badaddr())
240 state.sbadaddr = t.get_badaddr();
241
242 reg_t s = state.mstatus;
243 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
244 s = set_field(s, MSTATUS_SPP, state.prv);
245 s = set_field(s, MSTATUS_SIE, 0);
246 set_csr(CSR_MSTATUS, s);
247 set_privilege(PRV_S);
248 } else {
249 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
250 state.pc = (state.mtvec & ~(reg_t)1) + vector;
251 state.mepc = epc;
252 state.mcause = t.cause();
253 if (t.has_badaddr())
254 state.mbadaddr = t.get_badaddr();
255
256 reg_t s = state.mstatus;
257 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
258 s = set_field(s, MSTATUS_MPP, state.prv);
259 s = set_field(s, MSTATUS_MIE, 0);
260 set_csr(CSR_MSTATUS, s);
261 set_privilege(PRV_M);
262 }
263
264 yield_load_reservation();
265 }
266
267 void processor_t::disasm(insn_t insn)
268 {
269 static uint64_t last_pc = 1, last_bits;
270 static uint64_t executions = 1;
271
272 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
273 if (last_pc != state.pc || last_bits != bits) {
274 if (executions != 1) {
275 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
276 }
277
278 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
279 id, state.pc, bits, disassembler->disassemble(insn).c_str());
280 last_pc = state.pc;
281 last_bits = bits;
282 executions = 1;
283 } else {
284 executions++;
285 }
286 }
287
288 int processor_t::paddr_bits()
289 {
290 assert(xlen == max_xlen);
291 return max_xlen == 64 ? 50 : 34;
292 }
293
294 void processor_t::set_csr(int which, reg_t val)
295 {
296 val = zext_xlen(val);
297 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
298 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
299 switch (which)
300 {
301 case CSR_FFLAGS:
302 dirty_fp_state;
303 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
304 break;
305 case CSR_FRM:
306 dirty_fp_state;
307 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
308 break;
309 case CSR_FCSR:
310 dirty_fp_state;
311 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
312 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
313 break;
314 case CSR_MSTATUS: {
315 if ((val ^ state.mstatus) &
316 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
317 mmu->flush_tlb();
318
319 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
320 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
321 | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
322 | MSTATUS_TSR | (ext ? MSTATUS_XS : 0);
323
324 state.mstatus = (state.mstatus & ~mask) | (val & mask);
325
326 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
327 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
328 if (max_xlen == 32)
329 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
330 else
331 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
332
333 // spike supports the notion of xlen < max_xlen, but current priv spec
334 // doesn't provide a mechanism to run RV32 software on an RV64 machine
335 xlen = max_xlen;
336 break;
337 }
338 case CSR_MIP: {
339 reg_t mask = MIP_SSIP | MIP_STIP;
340 state.mip = (state.mip & ~mask) | (val & mask);
341 break;
342 }
343 case CSR_MIE:
344 state.mie = (state.mie & ~all_ints) | (val & all_ints);
345 break;
346 case CSR_MIDELEG:
347 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
348 break;
349 case CSR_MEDELEG: {
350 reg_t mask = 0;
351 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
352 #include "encoding.h"
353 #undef DECLARE_CAUSE
354 state.medeleg = (state.medeleg & ~mask) | (val & mask);
355 break;
356 }
357 case CSR_MINSTRET:
358 case CSR_MCYCLE:
359 if (xlen == 32)
360 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
361 else
362 state.minstret = val;
363 break;
364 case CSR_MINSTRETH:
365 case CSR_MCYCLEH:
366 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
367 break;
368 case CSR_SCOUNTEREN:
369 state.scounteren = val;
370 break;
371 case CSR_MCOUNTEREN:
372 state.mcounteren = val;
373 break;
374 case CSR_SSTATUS: {
375 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
376 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
377 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
378 }
379 case CSR_SIP: {
380 reg_t mask = MIP_SSIP & state.mideleg;
381 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
382 }
383 case CSR_SIE:
384 return set_csr(CSR_MIE,
385 (state.mie & ~state.mideleg) | (val & state.mideleg));
386 case CSR_SPTBR: {
387 mmu->flush_tlb();
388 if (max_xlen == 32)
389 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
390 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
391 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
392 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
393 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
394 break;
395 }
396 case CSR_SEPC: state.sepc = val; break;
397 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
398 case CSR_SSCRATCH: state.sscratch = val; break;
399 case CSR_SCAUSE: state.scause = val; break;
400 case CSR_SBADADDR: state.sbadaddr = val; break;
401 case CSR_MEPC: state.mepc = val; break;
402 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
403 case CSR_MSCRATCH: state.mscratch = val; break;
404 case CSR_MCAUSE: state.mcause = val; break;
405 case CSR_MBADADDR: state.mbadaddr = val; break;
406 case CSR_MISA: {
407 if (!(val & (1L << ('F' - 'A'))))
408 val &= ~(1L << ('D' - 'A'));
409
410 // allow MAFDC bits in MISA to be modified
411 reg_t mask = 0;
412 mask |= 1L << ('M' - 'A');
413 mask |= 1L << ('A' - 'A');
414 mask |= 1L << ('F' - 'A');
415 mask |= 1L << ('D' - 'A');
416 mask |= 1L << ('C' - 'A');
417 mask &= max_isa;
418
419 isa = (val & mask) | (isa & ~mask);
420 break;
421 }
422 case CSR_TSELECT:
423 if (val < state.num_triggers) {
424 state.tselect = val;
425 }
426 break;
427 case CSR_TDATA1:
428 {
429 mcontrol_t *mc = &state.mcontrol[state.tselect];
430 if (mc->dmode && !state.dcsr.cause) {
431 break;
432 }
433 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
434 mc->select = get_field(val, MCONTROL_SELECT);
435 mc->timing = get_field(val, MCONTROL_TIMING);
436 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
437 mc->chain = get_field(val, MCONTROL_CHAIN);
438 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
439 mc->m = get_field(val, MCONTROL_M);
440 mc->h = get_field(val, MCONTROL_H);
441 mc->s = get_field(val, MCONTROL_S);
442 mc->u = get_field(val, MCONTROL_U);
443 mc->execute = get_field(val, MCONTROL_EXECUTE);
444 mc->store = get_field(val, MCONTROL_STORE);
445 mc->load = get_field(val, MCONTROL_LOAD);
446 // Assume we're here because of csrw.
447 if (mc->execute)
448 mc->timing = 0;
449 trigger_updated();
450 }
451 break;
452 case CSR_TDATA2:
453 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
454 break;
455 }
456 if (state.tselect < state.num_triggers) {
457 state.tdata2[state.tselect] = val;
458 }
459 break;
460 case CSR_DCSR:
461 state.dcsr.prv = get_field(val, DCSR_PRV);
462 state.dcsr.step = get_field(val, DCSR_STEP);
463 // TODO: ndreset and fullreset
464 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
465 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
466 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
467 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
468 state.dcsr.halt = get_field(val, DCSR_HALT);
469 break;
470 case CSR_DPC:
471 state.dpc = val;
472 break;
473 case CSR_DSCRATCH:
474 state.dscratch = val;
475 break;
476 }
477 }
478
479 reg_t processor_t::get_csr(int which)
480 {
481 uint32_t ctr_en = -1;
482 if (state.prv < PRV_M)
483 ctr_en &= state.mcounteren;
484 if (state.prv < PRV_S)
485 ctr_en &= state.scounteren;
486 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
487
488 if (ctr_ok) {
489 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
490 return 0;
491 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
492 return 0;
493 }
494 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
495 return 0;
496 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
497 return 0;
498 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
499 return 0;
500
501 switch (which)
502 {
503 case CSR_FFLAGS:
504 require_fp;
505 if (!supports_extension('F'))
506 break;
507 return state.fflags;
508 case CSR_FRM:
509 require_fp;
510 if (!supports_extension('F'))
511 break;
512 return state.frm;
513 case CSR_FCSR:
514 require_fp;
515 if (!supports_extension('F'))
516 break;
517 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
518 case CSR_INSTRET:
519 case CSR_CYCLE:
520 if (ctr_ok)
521 return state.minstret;
522 break;
523 case CSR_MINSTRET:
524 case CSR_MCYCLE:
525 return state.minstret;
526 case CSR_MINSTRETH:
527 case CSR_MCYCLEH:
528 if (xlen == 32)
529 return state.minstret >> 32;
530 break;
531 case CSR_SCOUNTEREN: return state.scounteren;
532 case CSR_MCOUNTEREN: return state.mcounteren;
533 case CSR_SSTATUS: {
534 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
535 | SSTATUS_XS | SSTATUS_SUM;
536 reg_t sstatus = state.mstatus & mask;
537 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
538 (sstatus & SSTATUS_XS) == SSTATUS_XS)
539 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
540 return sstatus;
541 }
542 case CSR_SIP: return state.mip & state.mideleg;
543 case CSR_SIE: return state.mie & state.mideleg;
544 case CSR_SEPC: return state.sepc;
545 case CSR_SBADADDR: return state.sbadaddr;
546 case CSR_STVEC: return state.stvec;
547 case CSR_SCAUSE:
548 if (max_xlen > xlen)
549 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
550 return state.scause;
551 case CSR_SPTBR:
552 if (get_field(state.mstatus, MSTATUS_TVM))
553 require_privilege(PRV_M);
554 return state.sptbr;
555 case CSR_SSCRATCH: return state.sscratch;
556 case CSR_MSTATUS: return state.mstatus;
557 case CSR_MIP: return state.mip;
558 case CSR_MIE: return state.mie;
559 case CSR_MEPC: return state.mepc;
560 case CSR_MSCRATCH: return state.mscratch;
561 case CSR_MCAUSE: return state.mcause;
562 case CSR_MBADADDR: return state.mbadaddr;
563 case CSR_MISA: return isa;
564 case CSR_MARCHID: return 0;
565 case CSR_MIMPID: return 0;
566 case CSR_MVENDORID: return 0;
567 case CSR_MHARTID: return id;
568 case CSR_MTVEC: return state.mtvec;
569 case CSR_MEDELEG: return state.medeleg;
570 case CSR_MIDELEG: return state.mideleg;
571 case CSR_TSELECT: return state.tselect;
572 case CSR_TDATA1:
573 if (state.tselect < state.num_triggers) {
574 reg_t v = 0;
575 mcontrol_t *mc = &state.mcontrol[state.tselect];
576 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
577 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
578 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
579 v = set_field(v, MCONTROL_SELECT, mc->select);
580 v = set_field(v, MCONTROL_TIMING, mc->timing);
581 v = set_field(v, MCONTROL_ACTION, mc->action);
582 v = set_field(v, MCONTROL_CHAIN, mc->chain);
583 v = set_field(v, MCONTROL_MATCH, mc->match);
584 v = set_field(v, MCONTROL_M, mc->m);
585 v = set_field(v, MCONTROL_H, mc->h);
586 v = set_field(v, MCONTROL_S, mc->s);
587 v = set_field(v, MCONTROL_U, mc->u);
588 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
589 v = set_field(v, MCONTROL_STORE, mc->store);
590 v = set_field(v, MCONTROL_LOAD, mc->load);
591 return v;
592 } else {
593 return 0;
594 }
595 break;
596 case CSR_TDATA2:
597 if (state.tselect < state.num_triggers) {
598 return state.tdata2[state.tselect];
599 } else {
600 return 0;
601 }
602 break;
603 case CSR_TDATA3: return 0;
604 case CSR_DCSR:
605 {
606 uint32_t v = 0;
607 v = set_field(v, DCSR_XDEBUGVER, 1);
608 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
609 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
610 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
611 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
612 v = set_field(v, DCSR_STOPCYCLE, 0);
613 v = set_field(v, DCSR_STOPTIME, 0);
614 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
615 v = set_field(v, DCSR_STEP, state.dcsr.step);
616 v = set_field(v, DCSR_PRV, state.dcsr.prv);
617 return v;
618 }
619 case CSR_DPC:
620 return state.dpc;
621 case CSR_DSCRATCH:
622 return state.dscratch;
623 }
624 throw trap_illegal_instruction(0);
625 }
626
627 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
628 {
629 throw trap_illegal_instruction(0);
630 }
631
632 insn_func_t processor_t::decode_insn(insn_t insn)
633 {
634 // look up opcode in hash table
635 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
636 insn_desc_t desc = opcode_cache[idx];
637
638 if (unlikely(insn.bits() != desc.match)) {
639 // fall back to linear search
640 insn_desc_t* p = &instructions[0];
641 while ((insn.bits() & p->mask) != p->match)
642 p++;
643 desc = *p;
644
645 if (p->mask != 0 && p > &instructions[0]) {
646 if (p->match != (p-1)->match && p->match != (p+1)->match) {
647 // move to front of opcode list to reduce miss penalty
648 while (--p >= &instructions[0])
649 *(p+1) = *p;
650 instructions[0] = desc;
651 }
652 }
653
654 opcode_cache[idx] = desc;
655 opcode_cache[idx].match = insn.bits();
656 }
657
658 return xlen == 64 ? desc.rv64 : desc.rv32;
659 }
660
661 void processor_t::register_insn(insn_desc_t desc)
662 {
663 instructions.push_back(desc);
664 }
665
666 void processor_t::build_opcode_map()
667 {
668 struct cmp {
669 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
670 if (lhs.match == rhs.match)
671 return lhs.mask > rhs.mask;
672 return lhs.match > rhs.match;
673 }
674 };
675 std::sort(instructions.begin(), instructions.end(), cmp());
676
677 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
678 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
679 }
680
681 void processor_t::register_extension(extension_t* x)
682 {
683 for (auto insn : x->get_instructions())
684 register_insn(insn);
685 build_opcode_map();
686 for (auto disasm_insn : x->get_disasms())
687 disassembler->add_insn(disasm_insn);
688 if (ext != NULL)
689 throw std::logic_error("only one extension may be registered");
690 ext = x;
691 x->set_processor(this);
692 }
693
694 void processor_t::register_base_instructions()
695 {
696 #define DECLARE_INSN(name, match, mask) \
697 insn_bits_t name##_match = (match), name##_mask = (mask);
698 #include "encoding.h"
699 #undef DECLARE_INSN
700
701 #define DEFINE_INSN(name) \
702 REGISTER_INSN(this, name, name##_match, name##_mask)
703 #include "insn_list.h"
704 #undef DEFINE_INSN
705
706 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
707 build_opcode_map();
708 }
709
710 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
711 {
712 switch (addr)
713 {
714 case 0:
715 if (len <= 4) {
716 memset(bytes, 0, len);
717 bytes[0] = get_field(state.mip, MIP_MSIP);
718 return true;
719 }
720 break;
721 }
722
723 return false;
724 }
725
726 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
727 {
728 switch (addr)
729 {
730 case 0:
731 if (len <= 4) {
732 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
733 return true;
734 }
735 break;
736 }
737
738 return false;
739 }
740
741 void processor_t::trigger_updated()
742 {
743 mmu->flush_tlb();
744 mmu->check_triggers_fetch = false;
745 mmu->check_triggers_load = false;
746 mmu->check_triggers_store = false;
747
748 for (unsigned i = 0; i < state.num_triggers; i++) {
749 if (state.mcontrol[i].execute) {
750 mmu->check_triggers_fetch = true;
751 }
752 if (state.mcontrol[i].load) {
753 mmu->check_triggers_load = true;
754 }
755 if (state.mcontrol[i].store) {
756 mmu->check_triggers_store = true;
757 }
758 }
759 }