New definitions of misa/marchid/mvendorid
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "htif.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id)
23 : sim(sim), ext(NULL), disassembler(new disassembler_t),
24 id(id), run(false), debug(false)
25 {
26 parse_isa_string(isa);
27
28 mmu = new mmu_t(sim->mem, sim->memsz);
29 mmu->set_processor(this);
30
31 reset(true);
32
33 register_base_instructions();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = 0, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87
88 while (*p) {
89 isa |= 1L << (*p - 'a');
90
91 if (auto next = strchr(all_subsets, *p)) {
92 all_subsets = next + 1;
93 p++;
94 } else if (*p == 'x') {
95 const char* ext = p+1, *end = ext;
96 while (islower(*end))
97 end++;
98 register_extension(find_extension(std::string(ext, end - ext).c_str())());
99 p = end;
100 } else {
101 bad_isa_string(str);
102 }
103 }
104
105 if (supports_extension('D') && !supports_extension('F'))
106 bad_isa_string(str);
107
108 // if we have IMAFD, advertise G, too
109 if (supports_extension('I') && supports_extension('M') &&
110 supports_extension('A') && supports_extension('D'))
111 isa |= 1L << ('g' - 'a');
112
113 // advertise support for supervisor and user modes
114 isa |= 1L << ('s' - 'a');
115 isa |= 1L << ('u' - 'a');
116 }
117
118 void state_t::reset()
119 {
120 memset(this, 0, sizeof(*this));
121 prv = PRV_M;
122 pc = DEFAULT_RSTVEC;
123 load_reservation = -1;
124 }
125
126 void processor_t::set_debug(bool value)
127 {
128 debug = value;
129 if (ext)
130 ext->set_debug(value);
131 }
132
133 void processor_t::set_histogram(bool value)
134 {
135 histogram_enabled = value;
136 #ifndef RISCV_ENABLE_HISTOGRAM
137 if (value) {
138 fprintf(stderr, "PC Histogram support has not been properly enabled;");
139 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
140 }
141 #endif
142 }
143
144 void processor_t::reset(bool value)
145 {
146 if (run == !value)
147 return;
148 run = !value;
149
150 state.reset();
151 set_csr(CSR_MSTATUS, state.mstatus);
152
153 if (ext)
154 ext->reset(); // reset the extension
155 }
156
157 void processor_t::raise_interrupt(reg_t which)
158 {
159 throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
160 }
161
162 static int ctz(reg_t val)
163 {
164 int res = 0;
165 if (val)
166 while ((val & 1) == 0)
167 val >>= 1, res++;
168 return res;
169 }
170
171 void processor_t::take_interrupt()
172 {
173 check_timer();
174
175 reg_t interrupts = state.mip & state.mie;
176
177 reg_t m_interrupts = interrupts & ~state.mideleg;
178 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
179 if ((state.prv < PRV_M || (state.prv == PRV_M && mie)) && m_interrupts)
180 raise_interrupt(ctz(m_interrupts));
181
182 reg_t s_interrupts = interrupts & state.mideleg;
183 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
184 if ((state.prv < PRV_S || (state.prv == PRV_S && sie)) && s_interrupts)
185 raise_interrupt(ctz(s_interrupts));
186 }
187
188 void processor_t::check_timer()
189 {
190 if (sim->rtc >= state.mtimecmp)
191 state.mip |= MIP_MTIP;
192 }
193
194 static bool validate_priv(reg_t priv)
195 {
196 return priv == PRV_U || priv == PRV_S || priv == PRV_M;
197 }
198
199 void processor_t::set_privilege(reg_t prv)
200 {
201 assert(validate_priv(prv));
202 mmu->flush_tlb();
203 state.prv = prv;
204 }
205
206 void processor_t::take_trap(trap_t& t, reg_t epc)
207 {
208 if (debug)
209 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
210 id, t.name(), epc);
211
212 // by default, trap to M-mode, unless delegated to S-mode
213 reg_t bit = t.cause();
214 reg_t deleg = state.medeleg;
215 if (bit & ((reg_t)1 << (max_xlen-1)))
216 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
217 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
218 // handle the trap in S-mode
219 state.pc = state.stvec;
220 state.scause = t.cause();
221 state.sepc = epc;
222 if (t.has_badaddr())
223 state.sbadaddr = t.get_badaddr();
224
225 reg_t s = state.mstatus;
226 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
227 s = set_field(s, MSTATUS_SPP, state.prv);
228 s = set_field(s, MSTATUS_SIE, 0);
229 set_csr(CSR_MSTATUS, s);
230 set_privilege(PRV_S);
231 } else {
232 state.pc = DEFAULT_MTVEC;
233 state.mcause = t.cause();
234 state.mepc = epc;
235 if (t.has_badaddr())
236 state.mbadaddr = t.get_badaddr();
237
238 reg_t s = state.mstatus;
239 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
240 s = set_field(s, MSTATUS_MPP, state.prv);
241 s = set_field(s, MSTATUS_MIE, 0);
242 set_csr(CSR_MSTATUS, s);
243 set_privilege(PRV_M);
244 }
245
246 yield_load_reservation();
247 }
248
249 void processor_t::disasm(insn_t insn)
250 {
251 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
252 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
253 id, state.pc, bits, disassembler->disassemble(insn).c_str());
254 }
255
256 static bool validate_vm(int max_xlen, reg_t vm)
257 {
258 if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
259 return true;
260 if (max_xlen == 32 && vm == VM_SV32)
261 return true;
262 return vm == VM_MBARE;
263 }
264
265 void processor_t::set_csr(int which, reg_t val)
266 {
267 val = zext_xlen(val);
268 reg_t all_ints = MIP_SSIP | MIP_MSIP | MIP_STIP | MIP_MTIP | (1UL << IRQ_HOST);
269 reg_t s_ints = MIP_SSIP | MIP_STIP;
270 switch (which)
271 {
272 case CSR_FFLAGS:
273 dirty_fp_state;
274 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
275 break;
276 case CSR_FRM:
277 dirty_fp_state;
278 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
279 break;
280 case CSR_FCSR:
281 dirty_fp_state;
282 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
283 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
284 break;
285 case CSR_MTIME:
286 case CSR_STIMEW:
287 // this implementation ignores writes to MTIME
288 break;
289 case CSR_MTIMEH:
290 case CSR_STIMEHW:
291 // this implementation ignores writes to MTIME
292 break;
293 case CSR_TIMEW:
294 val -= sim->rtc;
295 if (xlen == 32)
296 state.sutime_delta = val | (state.sutime_delta >> 32 << 32);
297 else
298 state.sutime_delta = val;
299 break;
300 case CSR_TIMEHW:
301 val = ((val << 32) - sim->rtc) >> 32;
302 state.sutime_delta = (val << 32) | (uint32_t)state.sutime_delta;
303 break;
304 case CSR_CYCLEW:
305 case CSR_INSTRETW:
306 val -= state.minstret;
307 if (xlen == 32)
308 state.suinstret_delta = val | (state.suinstret_delta >> 32 << 32);
309 else
310 state.suinstret_delta = val;
311 break;
312 case CSR_CYCLEHW:
313 case CSR_INSTRETHW:
314 val = ((val << 32) - state.minstret) >> 32;
315 state.suinstret_delta = (val << 32) | (uint32_t)state.suinstret_delta;
316 break;
317 case CSR_MSTATUS: {
318 if ((val ^ state.mstatus) &
319 (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM))
320 mmu->flush_tlb();
321
322 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
323 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
324 | (ext ? MSTATUS_XS : 0);
325
326 if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
327 mask |= MSTATUS_VM;
328 if (validate_priv(get_field(val, MSTATUS_MPP)))
329 mask |= MSTATUS_MPP;
330
331 state.mstatus = (state.mstatus & ~mask) | (val & mask);
332
333 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
334 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
335 if (max_xlen == 32)
336 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
337 else
338 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
339
340 // spike supports the notion of xlen < max_xlen, but current priv spec
341 // doesn't provide a mechanism to run RV32 software on an RV64 machine
342 xlen = max_xlen;
343 break;
344 }
345 case CSR_MIP: {
346 reg_t mask = all_ints &~ MIP_MTIP;
347 state.mip = (state.mip & ~mask) | (val & mask);
348 break;
349 }
350 case CSR_MIPI:
351 state.mip = set_field(state.mip, MIP_MSIP, val & 1);
352 break;
353 case CSR_MIE:
354 state.mie = (state.mie & ~all_ints) | (val & all_ints);
355 break;
356 case CSR_MIDELEG:
357 state.mideleg = (state.mideleg & ~s_ints) | (val & s_ints);
358 break;
359 case CSR_MEDELEG: {
360 reg_t mask = 0;
361 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
362 #include "encoding.h"
363 #undef DECLARE_CAUSE
364 state.medeleg = (state.medeleg & ~mask) | (val & mask);
365 break;
366 }
367 case CSR_SSTATUS: {
368 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
369 | SSTATUS_XS | SSTATUS_PUM;
370 set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
371 break;
372 }
373 case CSR_SIP: {
374 reg_t mask = s_ints &~ MIP_STIP;
375 state.mip = (state.mip & ~mask) | (val & mask);
376 break;
377 }
378 case CSR_SIE: {
379 reg_t mask = s_ints;
380 state.mie = (state.mie & ~mask) | (val & mask);
381 break;
382 }
383 case CSR_SEPC: state.sepc = val; break;
384 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
385 case CSR_SPTBR: state.sptbr = val; break;
386 case CSR_SSCRATCH: state.sscratch = val; break;
387 case CSR_SCAUSE: state.scause = val; break;
388 case CSR_SBADADDR: state.sbadaddr = val; break;
389 case CSR_MEPC: state.mepc = val; break;
390 case CSR_MSCRATCH: state.mscratch = val; break;
391 case CSR_MCAUSE: state.mcause = val; break;
392 case CSR_MBADADDR: state.mbadaddr = val; break;
393 case CSR_MTIMECMP:
394 state.mip &= ~MIP_MTIP;
395 state.mtimecmp = val;
396 break;
397 case CSR_MTOHOST:
398 if (state.tohost == 0)
399 state.tohost = val;
400 break;
401 case CSR_MFROMHOST:
402 state.mip = (state.mip & ~(1 << IRQ_HOST)) | (val ? (1 << IRQ_HOST) : 0);
403 state.fromhost = val;
404 break;
405 }
406 }
407
408 reg_t processor_t::get_csr(int which)
409 {
410 switch (which)
411 {
412 case CSR_FFLAGS:
413 require_fp;
414 if (!supports_extension('F'))
415 break;
416 return state.fflags;
417 case CSR_FRM:
418 require_fp;
419 if (!supports_extension('F'))
420 break;
421 return state.frm;
422 case CSR_FCSR:
423 require_fp;
424 if (!supports_extension('F'))
425 break;
426 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
427 case CSR_MTIME:
428 case CSR_STIME:
429 case CSR_STIMEW:
430 return sim->rtc;
431 case CSR_MTIMEH:
432 case CSR_STIMEH:
433 case CSR_STIMEHW:
434 return sim->rtc >> 32;
435 case CSR_TIME:
436 case CSR_TIMEW:
437 return sim->rtc + state.sutime_delta;
438 case CSR_CYCLE:
439 case CSR_CYCLEW:
440 case CSR_INSTRET:
441 case CSR_INSTRETW:
442 return state.minstret + state.suinstret_delta;
443 case CSR_TIMEH:
444 case CSR_TIMEHW:
445 if (xlen == 64)
446 break;
447 return (sim->rtc + state.sutime_delta) >> 32;
448 case CSR_CYCLEH:
449 case CSR_INSTRETH:
450 case CSR_CYCLEHW:
451 case CSR_INSTRETHW:
452 if (xlen == 64)
453 break;
454 return (state.minstret + state.suinstret_delta) >> 32;
455 case CSR_SSTATUS: {
456 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
457 | SSTATUS_XS | SSTATUS_PUM;
458 reg_t sstatus = state.mstatus & mask;
459 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
460 (sstatus & SSTATUS_XS) == SSTATUS_XS)
461 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
462 return sstatus;
463 }
464 case CSR_SIP: return state.mip & (MIP_SSIP | MIP_STIP);
465 case CSR_SIE: return state.mie & (MIP_SSIP | MIP_STIP);
466 case CSR_SEPC: return state.sepc;
467 case CSR_SBADADDR: return state.sbadaddr;
468 case CSR_STVEC: return state.stvec;
469 case CSR_SCAUSE:
470 if (max_xlen > xlen)
471 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
472 return state.scause;
473 case CSR_SPTBR: return state.sptbr;
474 case CSR_SASID: return 0;
475 case CSR_SSCRATCH: return state.sscratch;
476 case CSR_MSTATUS: return state.mstatus;
477 case CSR_MIP: return state.mip;
478 case CSR_MIPI: return 0;
479 case CSR_MIE: return state.mie;
480 case CSR_MEPC: return state.mepc;
481 case CSR_MSCRATCH: return state.mscratch;
482 case CSR_MCAUSE: return state.mcause;
483 case CSR_MBADADDR: return state.mbadaddr;
484 case CSR_MTIMECMP: return state.mtimecmp;
485 case CSR_MISA: return isa;
486 case CSR_MARCHID: return 0;
487 case CSR_MIMPID: return 0;
488 case CSR_MVENDORID: return 0;
489 case CSR_MHARTID: return id;
490 case CSR_MTVEC: return DEFAULT_MTVEC;
491 case CSR_MEDELEG: return state.medeleg;
492 case CSR_MIDELEG: return state.mideleg;
493 case CSR_MTOHOST:
494 sim->get_htif()->tick(); // not necessary, but faster
495 return state.tohost;
496 case CSR_MFROMHOST:
497 sim->get_htif()->tick(); // not necessary, but faster
498 return state.fromhost;
499 case CSR_MCFGADDR: return sim->memsz;
500 case CSR_UARCH0:
501 case CSR_UARCH1:
502 case CSR_UARCH2:
503 case CSR_UARCH3:
504 case CSR_UARCH4:
505 case CSR_UARCH5:
506 case CSR_UARCH6:
507 case CSR_UARCH7:
508 case CSR_UARCH8:
509 case CSR_UARCH9:
510 case CSR_UARCH10:
511 case CSR_UARCH11:
512 case CSR_UARCH12:
513 case CSR_UARCH13:
514 case CSR_UARCH14:
515 case CSR_UARCH15:
516 return 0;
517 }
518 throw trap_illegal_instruction();
519 }
520
521 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
522 {
523 throw trap_illegal_instruction();
524 }
525
526 insn_func_t processor_t::decode_insn(insn_t insn)
527 {
528 // look up opcode in hash table
529 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
530 insn_desc_t desc = opcode_cache[idx];
531
532 if (unlikely(insn.bits() != desc.match)) {
533 // fall back to linear search
534 insn_desc_t* p = &instructions[0];
535 while ((insn.bits() & p->mask) != p->match)
536 p++;
537 desc = *p;
538
539 if (p->mask != 0 && p > &instructions[0]) {
540 if (p->match != (p-1)->match && p->match != (p+1)->match) {
541 // move to front of opcode list to reduce miss penalty
542 while (--p >= &instructions[0])
543 *(p+1) = *p;
544 instructions[0] = desc;
545 }
546 }
547
548 opcode_cache[idx] = desc;
549 opcode_cache[idx].match = insn.bits();
550 }
551
552 return xlen == 64 ? desc.rv64 : desc.rv32;
553 }
554
555 void processor_t::register_insn(insn_desc_t desc)
556 {
557 instructions.push_back(desc);
558 }
559
560 void processor_t::build_opcode_map()
561 {
562 struct cmp {
563 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
564 if (lhs.match == rhs.match)
565 return lhs.mask > rhs.mask;
566 return lhs.match > rhs.match;
567 }
568 };
569 std::sort(instructions.begin(), instructions.end(), cmp());
570
571 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
572 opcode_cache[i] = {1, 0, &illegal_instruction, &illegal_instruction};
573 }
574
575 void processor_t::register_extension(extension_t* x)
576 {
577 for (auto insn : x->get_instructions())
578 register_insn(insn);
579 build_opcode_map();
580 for (auto disasm_insn : x->get_disasms())
581 disassembler->add_insn(disasm_insn);
582 if (ext != NULL)
583 throw std::logic_error("only one extension may be registered");
584 ext = x;
585 x->set_processor(this);
586 }
587
588 void processor_t::register_base_instructions()
589 {
590 #define DECLARE_INSN(name, match, mask) \
591 insn_bits_t name##_match = (match), name##_mask = (mask);
592 #include "encoding.h"
593 #undef DECLARE_INSN
594
595 #define DEFINE_INSN(name) \
596 REGISTER_INSN(this, name, name##_match, name##_mask)
597 #include "insn_list.h"
598 #undef DEFINE_INSN
599
600 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
601 build_opcode_map();
602 }
603
604 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
605 {
606 try {
607 auto res = get_csr(addr / (max_xlen / 8));
608 memcpy(bytes, &res, len);
609 return true;
610 } catch (trap_illegal_instruction& t) {
611 return false;
612 }
613 }
614
615 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
616 {
617 try {
618 reg_t value = 0;
619 memcpy(&value, bytes, len);
620 set_csr(addr / (max_xlen / 8), value);
621 return true;
622 } catch (trap_illegal_instruction& t) {
623 return false;
624 }
625 }