Fix paddr_bits computation prior to VM setup
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "htif.h"
10 #include "disasm.h"
11 #include "gdbserver.h"
12 #include <cinttypes>
13 #include <cmath>
14 #include <cstdlib>
15 #include <iostream>
16 #include <assert.h>
17 #include <limits.h>
18 #include <stdexcept>
19 #include <algorithm>
20
21 #undef STATE
22 #define STATE state
23
24 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
25 bool halt_on_reset)
26 : debug(false), sim(sim), ext(NULL), disassembler(new disassembler_t),
27 id(id), run(false), halt_on_reset(halt_on_reset)
28 {
29 parse_isa_string(isa);
30
31 mmu = new mmu_t(sim, this);
32
33 reset(true);
34
35 register_base_instructions();
36 }
37
38 processor_t::~processor_t()
39 {
40 #ifdef RISCV_ENABLE_HISTOGRAM
41 if (histogram_enabled)
42 {
43 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
44 for (auto it : pc_histogram)
45 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
46 }
47 #endif
48
49 delete mmu;
50 delete disassembler;
51 }
52
53 static void bad_isa_string(const char* isa)
54 {
55 fprintf(stderr, "error: bad --isa option %s\n", isa);
56 abort();
57 }
58
59 void processor_t::parse_isa_string(const char* str)
60 {
61 std::string lowercase, tmp;
62 for (const char *r = str; *r; r++)
63 lowercase += std::tolower(*r);
64
65 const char* p = lowercase.c_str();
66 const char* all_subsets = "imafdc";
67
68 max_xlen = 64;
69 isa = reg_t(2) << 62;
70
71 if (strncmp(p, "rv32", 4) == 0)
72 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
73 else if (strncmp(p, "rv64", 4) == 0)
74 p += 4;
75 else if (strncmp(p, "rv", 2) == 0)
76 p += 2;
77
78 if (!*p) {
79 p = all_subsets;
80 } else if (*p == 'g') { // treat "G" as "IMAFD"
81 tmp = std::string("imafd") + (p+1);
82 p = &tmp[0];
83 } else if (*p != 'i') {
84 bad_isa_string(str);
85 }
86
87 isa_string = "rv" + std::to_string(max_xlen) + p;
88 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
89
90 while (*p) {
91 isa |= 1L << (*p - 'a');
92
93 if (auto next = strchr(all_subsets, *p)) {
94 all_subsets = next + 1;
95 p++;
96 } else if (*p == 'x') {
97 const char* ext = p+1, *end = ext;
98 while (islower(*end))
99 end++;
100 register_extension(find_extension(std::string(ext, end - ext).c_str())());
101 p = end;
102 } else {
103 bad_isa_string(str);
104 }
105 }
106
107 if (supports_extension('D') && !supports_extension('F'))
108 bad_isa_string(str);
109
110 // advertise support for supervisor and user modes
111 isa |= 1L << ('s' - 'a');
112 isa |= 1L << ('u' - 'a');
113 }
114
115 void state_t::reset()
116 {
117 memset(this, 0, sizeof(*this));
118 prv = PRV_M;
119 pc = DEFAULT_RSTVEC;
120 mtvec = DEFAULT_MTVEC;
121 load_reservation = -1;
122 }
123
124 void processor_t::set_debug(bool value)
125 {
126 debug = value;
127 if (ext)
128 ext->set_debug(value);
129 }
130
131 void processor_t::set_histogram(bool value)
132 {
133 histogram_enabled = value;
134 #ifndef RISCV_ENABLE_HISTOGRAM
135 if (value) {
136 fprintf(stderr, "PC Histogram support has not been properly enabled;");
137 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
138 }
139 #endif
140 }
141
142 void processor_t::reset(bool value)
143 {
144 if (run == !value)
145 return;
146 run = !value;
147
148 state.reset();
149 state.dcsr.halt = halt_on_reset;
150 halt_on_reset = false;
151 set_csr(CSR_MSTATUS, state.mstatus);
152
153 if (ext)
154 ext->reset(); // reset the extension
155 }
156
157 void processor_t::raise_interrupt(reg_t which)
158 {
159 throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
160 }
161
162 static int ctz(reg_t val)
163 {
164 int res = 0;
165 if (val)
166 while ((val & 1) == 0)
167 val >>= 1, res++;
168 return res;
169 }
170
171 void processor_t::take_interrupt()
172 {
173 reg_t pending_interrupts = state.mip & state.mie;
174
175 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
176 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
177 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
178
179 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
180 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
181 enabled_interrupts |= pending_interrupts & state.mideleg & -s_enabled;
182
183 if (enabled_interrupts)
184 raise_interrupt(ctz(enabled_interrupts));
185 }
186
187 static bool validate_priv(reg_t priv)
188 {
189 return priv == PRV_U || priv == PRV_S || priv == PRV_M;
190 }
191
192 void processor_t::set_privilege(reg_t prv)
193 {
194 assert(validate_priv(prv));
195 mmu->flush_tlb();
196 state.prv = prv;
197 }
198
199 void processor_t::enter_debug_mode(uint8_t cause)
200 {
201 state.dcsr.cause = cause;
202 state.dcsr.prv = state.prv;
203 set_privilege(PRV_M);
204 state.dpc = state.pc;
205 state.pc = DEBUG_ROM_START;
206 //debug = true; // TODO
207 }
208
209 void processor_t::take_trap(trap_t& t, reg_t epc)
210 {
211 if (debug) {
212 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
213 id, t.name(), epc);
214 if (t.has_badaddr())
215 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
216 t.get_badaddr());
217 }
218
219 if (t.cause() == CAUSE_BREAKPOINT && (
220 (state.prv == PRV_M && state.dcsr.ebreakm) ||
221 (state.prv == PRV_H && state.dcsr.ebreakh) ||
222 (state.prv == PRV_S && state.dcsr.ebreaks) ||
223 (state.prv == PRV_U && state.dcsr.ebreaku))) {
224 enter_debug_mode(DCSR_CAUSE_SWBP);
225 return;
226 }
227
228 if (state.dcsr.cause) {
229 state.pc = DEBUG_ROM_EXCEPTION;
230 return;
231 }
232
233 // by default, trap to M-mode, unless delegated to S-mode
234 reg_t bit = t.cause();
235 reg_t deleg = state.medeleg;
236 if (bit & ((reg_t)1 << (max_xlen-1)))
237 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
238 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
239 // handle the trap in S-mode
240 state.pc = state.stvec;
241 state.scause = t.cause();
242 state.sepc = epc;
243 if (t.has_badaddr())
244 state.sbadaddr = t.get_badaddr();
245
246 reg_t s = state.mstatus;
247 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
248 s = set_field(s, MSTATUS_SPP, state.prv);
249 s = set_field(s, MSTATUS_SIE, 0);
250 set_csr(CSR_MSTATUS, s);
251 set_privilege(PRV_S);
252 } else {
253 state.pc = state.mtvec;
254 state.mepc = epc;
255 state.mcause = t.cause();
256 if (t.has_badaddr())
257 state.mbadaddr = t.get_badaddr();
258
259 reg_t s = state.mstatus;
260 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
261 s = set_field(s, MSTATUS_MPP, state.prv);
262 s = set_field(s, MSTATUS_MIE, 0);
263 set_csr(CSR_MSTATUS, s);
264 set_privilege(PRV_M);
265 }
266
267 yield_load_reservation();
268 }
269
270 void processor_t::disasm(insn_t insn)
271 {
272 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
273 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
274 id, state.pc, bits, disassembler->disassemble(insn).c_str());
275 }
276
277 static bool validate_vm(int max_xlen, reg_t vm)
278 {
279 if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
280 return true;
281 if (max_xlen == 32 && vm == VM_SV32)
282 return true;
283 return vm == VM_MBARE;
284 }
285
286 int processor_t::paddr_bits()
287 {
288 assert(xlen == max_xlen);
289 return max_xlen == 64 ? 50 : 34;
290 }
291
292 void processor_t::set_csr(int which, reg_t val)
293 {
294 val = zext_xlen(val);
295 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
296 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
297 switch (which)
298 {
299 case CSR_FFLAGS:
300 dirty_fp_state;
301 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
302 break;
303 case CSR_FRM:
304 dirty_fp_state;
305 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
306 break;
307 case CSR_FCSR:
308 dirty_fp_state;
309 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
310 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
311 break;
312 case CSR_MSTATUS: {
313 if ((val ^ state.mstatus) &
314 (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM))
315 mmu->flush_tlb();
316
317 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
318 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
319 | (ext ? MSTATUS_XS : 0);
320
321 if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
322 mask |= MSTATUS_VM;
323 if (validate_priv(get_field(val, MSTATUS_MPP)))
324 mask |= MSTATUS_MPP;
325
326 state.mstatus = (state.mstatus & ~mask) | (val & mask);
327
328 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
329 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
330 if (max_xlen == 32)
331 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
332 else
333 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
334
335 // spike supports the notion of xlen < max_xlen, but current priv spec
336 // doesn't provide a mechanism to run RV32 software on an RV64 machine
337 xlen = max_xlen;
338 break;
339 }
340 case CSR_MIP: {
341 reg_t mask = MIP_SSIP | MIP_STIP;
342 state.mip = (state.mip & ~mask) | (val & mask);
343 break;
344 }
345 case CSR_MIE:
346 state.mie = (state.mie & ~all_ints) | (val & all_ints);
347 break;
348 case CSR_MIDELEG:
349 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
350 break;
351 case CSR_MEDELEG: {
352 reg_t mask = 0;
353 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
354 #include "encoding.h"
355 #undef DECLARE_CAUSE
356 state.medeleg = (state.medeleg & ~mask) | (val & mask);
357 break;
358 }
359 case CSR_MUCOUNTEREN:
360 state.mucounteren = val & 7;
361 break;
362 case CSR_MSCOUNTEREN:
363 state.mscounteren = val & 7;
364 break;
365 case CSR_SSTATUS: {
366 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
367 | SSTATUS_XS | SSTATUS_PUM;
368 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
369 }
370 case CSR_SIP:
371 return set_csr(CSR_MIP,
372 (state.mip & ~state.mideleg) | (val & state.mideleg));
373 case CSR_SIE:
374 return set_csr(CSR_MIE,
375 (state.mie & ~state.mideleg) | (val & state.mideleg));
376 case CSR_SPTBR: {
377 // upper bits of sptbr are the ASID; we only support ASID = 0
378 state.sptbr = val & (((reg_t)1 << (paddr_bits() - PGSHIFT)) - 1);
379 break;
380 }
381 case CSR_SEPC: state.sepc = val; break;
382 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
383 case CSR_SSCRATCH: state.sscratch = val; break;
384 case CSR_SCAUSE: state.scause = val; break;
385 case CSR_SBADADDR: state.sbadaddr = val; break;
386 case CSR_MEPC: state.mepc = val; break;
387 case CSR_MTVEC: state.mtvec = val >> 2 << 2; break;
388 case CSR_MSCRATCH: state.mscratch = val; break;
389 case CSR_MCAUSE: state.mcause = val; break;
390 case CSR_MBADADDR: state.mbadaddr = val; break;
391 case CSR_DCSR:
392 state.dcsr.prv = get_field(val, DCSR_PRV);
393 state.dcsr.step = get_field(val, DCSR_STEP);
394 // TODO: ndreset and fullreset
395 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
396 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
397 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
398 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
399 state.dcsr.halt = get_field(val, DCSR_HALT);
400 break;
401 case CSR_DPC:
402 state.dpc = val;
403 break;
404 case CSR_DSCRATCH:
405 state.dscratch = val;
406 break;
407 }
408 }
409
410 reg_t processor_t::get_csr(int which)
411 {
412 switch (which)
413 {
414 case CSR_FFLAGS:
415 require_fp;
416 if (!supports_extension('F'))
417 break;
418 return state.fflags;
419 case CSR_FRM:
420 require_fp;
421 if (!supports_extension('F'))
422 break;
423 return state.frm;
424 case CSR_FCSR:
425 require_fp;
426 if (!supports_extension('F'))
427 break;
428 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
429 case CSR_TIME:
430 case CSR_INSTRET:
431 case CSR_CYCLE:
432 if ((state.mucounteren >> (which & (xlen-1))) & 1)
433 return get_csr(which + (CSR_MCYCLE - CSR_CYCLE));
434 break;
435 case CSR_STIME:
436 case CSR_SINSTRET:
437 case CSR_SCYCLE:
438 if ((state.mscounteren >> (which & (xlen-1))) & 1)
439 return get_csr(which + (CSR_MCYCLE - CSR_SCYCLE));
440 break;
441 case CSR_MUCOUNTEREN: return state.mucounteren;
442 case CSR_MSCOUNTEREN: return state.mscounteren;
443 case CSR_MUCYCLE_DELTA: return 0;
444 case CSR_MUTIME_DELTA: return 0;
445 case CSR_MUINSTRET_DELTA: return 0;
446 case CSR_MSCYCLE_DELTA: return 0;
447 case CSR_MSTIME_DELTA: return 0;
448 case CSR_MSINSTRET_DELTA: return 0;
449 case CSR_MUCYCLE_DELTAH: if (xlen > 32) break; else return 0;
450 case CSR_MUTIME_DELTAH: if (xlen > 32) break; else return 0;
451 case CSR_MUINSTRET_DELTAH: if (xlen > 32) break; else return 0;
452 case CSR_MSCYCLE_DELTAH: if (xlen > 32) break; else return 0;
453 case CSR_MSTIME_DELTAH: if (xlen > 32) break; else return 0;
454 case CSR_MSINSTRET_DELTAH: if (xlen > 32) break; else return 0;
455 case CSR_MCYCLE: return state.minstret;
456 case CSR_MINSTRET: return state.minstret;
457 case CSR_MCYCLEH: if (xlen > 32) break; else return state.minstret >> 32;
458 case CSR_MINSTRETH: if (xlen > 32) break; else return state.minstret >> 32;
459 case CSR_SSTATUS: {
460 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
461 | SSTATUS_XS | SSTATUS_PUM;
462 reg_t sstatus = state.mstatus & mask;
463 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
464 (sstatus & SSTATUS_XS) == SSTATUS_XS)
465 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
466 return sstatus;
467 }
468 case CSR_SIP: return state.mip & state.mideleg;
469 case CSR_SIE: return state.mie & state.mideleg;
470 case CSR_SEPC: return state.sepc;
471 case CSR_SBADADDR: return state.sbadaddr;
472 case CSR_STVEC: return state.stvec;
473 case CSR_SCAUSE:
474 if (max_xlen > xlen)
475 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
476 return state.scause;
477 case CSR_SPTBR: return state.sptbr;
478 case CSR_SSCRATCH: return state.sscratch;
479 case CSR_MSTATUS: return state.mstatus;
480 case CSR_MIP: return state.mip;
481 case CSR_MIE: return state.mie;
482 case CSR_MEPC: return state.mepc;
483 case CSR_MSCRATCH: return state.mscratch;
484 case CSR_MCAUSE: return state.mcause;
485 case CSR_MBADADDR: return state.mbadaddr;
486 case CSR_MISA: return isa;
487 case CSR_MARCHID: return 0;
488 case CSR_MIMPID: return 0;
489 case CSR_MVENDORID: return 0;
490 case CSR_MHARTID: return id;
491 case CSR_MTVEC: return state.mtvec;
492 case CSR_MEDELEG: return state.medeleg;
493 case CSR_MIDELEG: return state.mideleg;
494 case CSR_TDRSELECT: return 0;
495 case CSR_DCSR:
496 {
497 uint32_t v = 0;
498 v = set_field(v, DCSR_XDEBUGVER, 1);
499 v = set_field(v, DCSR_HWBPCOUNT, 0);
500 v = set_field(v, DCSR_NDRESET, 0);
501 v = set_field(v, DCSR_FULLRESET, 0);
502 v = set_field(v, DCSR_PRV, state.dcsr.prv);
503 v = set_field(v, DCSR_STEP, state.dcsr.step);
504 v = set_field(v, DCSR_DEBUGINT, sim->debug_module.get_interrupt(id));
505 v = set_field(v, DCSR_STOPCYCLE, 0);
506 v = set_field(v, DCSR_STOPTIME, 0);
507 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
508 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
509 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
510 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
511 v = set_field(v, DCSR_HALT, state.dcsr.halt);
512 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
513 return v;
514 }
515 case CSR_DPC:
516 return state.dpc;
517 case CSR_DSCRATCH:
518 return state.dscratch;
519 }
520 throw trap_illegal_instruction();
521 }
522
523 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
524 {
525 throw trap_illegal_instruction();
526 }
527
528 insn_func_t processor_t::decode_insn(insn_t insn)
529 {
530 // look up opcode in hash table
531 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
532 insn_desc_t desc = opcode_cache[idx];
533
534 if (unlikely(insn.bits() != desc.match)) {
535 // fall back to linear search
536 insn_desc_t* p = &instructions[0];
537 while ((insn.bits() & p->mask) != p->match)
538 p++;
539 desc = *p;
540
541 if (p->mask != 0 && p > &instructions[0]) {
542 if (p->match != (p-1)->match && p->match != (p+1)->match) {
543 // move to front of opcode list to reduce miss penalty
544 while (--p >= &instructions[0])
545 *(p+1) = *p;
546 instructions[0] = desc;
547 }
548 }
549
550 opcode_cache[idx] = desc;
551 opcode_cache[idx].match = insn.bits();
552 }
553
554 return xlen == 64 ? desc.rv64 : desc.rv32;
555 }
556
557 void processor_t::register_insn(insn_desc_t desc)
558 {
559 instructions.push_back(desc);
560 }
561
562 void processor_t::build_opcode_map()
563 {
564 struct cmp {
565 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
566 if (lhs.match == rhs.match)
567 return lhs.mask > rhs.mask;
568 return lhs.match > rhs.match;
569 }
570 };
571 std::sort(instructions.begin(), instructions.end(), cmp());
572
573 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
574 opcode_cache[i] = {1, 0, &illegal_instruction, &illegal_instruction};
575 }
576
577 void processor_t::register_extension(extension_t* x)
578 {
579 for (auto insn : x->get_instructions())
580 register_insn(insn);
581 build_opcode_map();
582 for (auto disasm_insn : x->get_disasms())
583 disassembler->add_insn(disasm_insn);
584 if (ext != NULL)
585 throw std::logic_error("only one extension may be registered");
586 ext = x;
587 x->set_processor(this);
588 }
589
590 void processor_t::register_base_instructions()
591 {
592 #define DECLARE_INSN(name, match, mask) \
593 insn_bits_t name##_match = (match), name##_mask = (mask);
594 #include "encoding.h"
595 #undef DECLARE_INSN
596
597 #define DEFINE_INSN(name) \
598 REGISTER_INSN(this, name, name##_match, name##_mask)
599 #include "insn_list.h"
600 #undef DEFINE_INSN
601
602 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
603 build_opcode_map();
604 }
605
606 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
607 {
608 return false;
609 }
610
611 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
612 {
613 switch (addr)
614 {
615 case 0:
616 state.mip &= ~MIP_MSIP;
617 if (bytes[0] & 1)
618 state.mip |= MIP_MSIP;
619 return true;
620
621 default:
622 return false;
623 }
624 }