Fix corner case in repeated execution (#127)
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112
113 max_isa = isa;
114 }
115
116 void state_t::reset()
117 {
118 memset(this, 0, sizeof(*this));
119 prv = PRV_M;
120 pc = DEFAULT_RSTVEC;
121 load_reservation = -1;
122 tselect = 0;
123 for (unsigned int i = 0; i < num_triggers; i++)
124 mcontrol[i].type = 2;
125 }
126
127 void processor_t::set_debug(bool value)
128 {
129 debug = value;
130 if (ext)
131 ext->set_debug(value);
132 }
133
134 void processor_t::set_histogram(bool value)
135 {
136 histogram_enabled = value;
137 #ifndef RISCV_ENABLE_HISTOGRAM
138 if (value) {
139 fprintf(stderr, "PC Histogram support has not been properly enabled;");
140 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
141 }
142 #endif
143 }
144
145 void processor_t::reset()
146 {
147 state.reset();
148 state.dcsr.halt = halt_on_reset;
149 halt_on_reset = false;
150 set_csr(CSR_MSTATUS, state.mstatus);
151
152 if (ext)
153 ext->reset(); // reset the extension
154 }
155
156 // Count number of contiguous 0 bits starting from the LSB.
157 static int ctz(reg_t val)
158 {
159 int res = 0;
160 if (val)
161 while ((val & 1) == 0)
162 val >>= 1, res++;
163 return res;
164 }
165
166 void processor_t::take_interrupt(reg_t pending_interrupts)
167 {
168 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
169 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
170 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
171
172 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
173 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
174 if (enabled_interrupts == 0)
175 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
176
177 if (state.dcsr.cause == 0 && enabled_interrupts)
178 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
179 }
180
181 static int xlen_to_uxl(int xlen)
182 {
183 if (xlen == 32)
184 return 1;
185 if (xlen == 64)
186 return 2;
187 abort();
188 }
189
190 void processor_t::set_privilege(reg_t prv)
191 {
192 assert(prv <= PRV_M);
193 if (prv == PRV_H)
194 prv = PRV_U;
195 mmu->flush_tlb();
196 state.prv = prv;
197 }
198
199 void processor_t::enter_debug_mode(uint8_t cause)
200 {
201 state.dcsr.cause = cause;
202 state.dcsr.prv = state.prv;
203 set_privilege(PRV_M);
204 state.dpc = state.pc;
205 state.pc = DEBUG_ROM_ENTRY;
206 }
207
208 void processor_t::take_trap(trap_t& t, reg_t epc)
209 {
210 if (debug) {
211 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
212 id, t.name(), epc);
213 if (t.has_badaddr())
214 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
215 t.get_badaddr());
216 }
217
218 if (state.dcsr.cause) {
219 if (t.cause() == CAUSE_BREAKPOINT) {
220 state.pc = DEBUG_ROM_ENTRY;
221 } else {
222 state.pc = DEBUG_ROM_TVEC;
223 }
224 return;
225 }
226
227 if (t.cause() == CAUSE_BREAKPOINT && (
228 (state.prv == PRV_M && state.dcsr.ebreakm) ||
229 (state.prv == PRV_H && state.dcsr.ebreakh) ||
230 (state.prv == PRV_S && state.dcsr.ebreaks) ||
231 (state.prv == PRV_U && state.dcsr.ebreaku))) {
232 enter_debug_mode(DCSR_CAUSE_SWBP);
233 return;
234 }
235
236 // by default, trap to M-mode, unless delegated to S-mode
237 reg_t bit = t.cause();
238 reg_t deleg = state.medeleg;
239 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
240 if (interrupt)
241 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
242 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
243 // handle the trap in S-mode
244 state.pc = state.stvec;
245 state.scause = t.cause();
246 state.sepc = epc;
247 if (t.has_badaddr())
248 state.sbadaddr = t.get_badaddr();
249
250 reg_t s = state.mstatus;
251 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
252 s = set_field(s, MSTATUS_SPP, state.prv);
253 s = set_field(s, MSTATUS_SIE, 0);
254 set_csr(CSR_MSTATUS, s);
255 set_privilege(PRV_S);
256 } else {
257 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
258 state.pc = (state.mtvec & ~(reg_t)1) + vector;
259 state.mepc = epc;
260 state.mcause = t.cause();
261 if (t.has_badaddr())
262 state.mbadaddr = t.get_badaddr();
263
264 reg_t s = state.mstatus;
265 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
266 s = set_field(s, MSTATUS_MPP, state.prv);
267 s = set_field(s, MSTATUS_MIE, 0);
268 set_csr(CSR_MSTATUS, s);
269 set_privilege(PRV_M);
270 }
271
272 yield_load_reservation();
273 }
274
275 void processor_t::disasm(insn_t insn)
276 {
277 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
278 if (last_pc != state.pc || last_bits != bits) {
279 if (executions != 1) {
280 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
281 }
282
283 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
284 id, state.pc, bits, disassembler->disassemble(insn).c_str());
285 last_pc = state.pc;
286 last_bits = bits;
287 executions = 1;
288 } else {
289 executions++;
290 }
291 }
292
293 int processor_t::paddr_bits()
294 {
295 assert(xlen == max_xlen);
296 return max_xlen == 64 ? 50 : 34;
297 }
298
299 void processor_t::set_csr(int which, reg_t val)
300 {
301 val = zext_xlen(val);
302 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
303 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
304 switch (which)
305 {
306 case CSR_FFLAGS:
307 dirty_fp_state;
308 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
309 break;
310 case CSR_FRM:
311 dirty_fp_state;
312 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
313 break;
314 case CSR_FCSR:
315 dirty_fp_state;
316 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
317 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
318 break;
319 case CSR_MSTATUS: {
320 if ((val ^ state.mstatus) &
321 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
322 mmu->flush_tlb();
323
324 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
325 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
326 | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
327 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
328 (ext ? MSTATUS_XS : 0);
329
330 state.mstatus = (state.mstatus & ~mask) | (val & mask);
331
332 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
333 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
334 if (max_xlen == 32)
335 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
336 else
337 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
338
339 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
340 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
341 // U-XLEN == S-XLEN == M-XLEN
342 xlen = max_xlen;
343 break;
344 }
345 case CSR_MIP: {
346 reg_t mask = MIP_SSIP | MIP_STIP;
347 state.mip = (state.mip & ~mask) | (val & mask);
348 break;
349 }
350 case CSR_MIE:
351 state.mie = (state.mie & ~all_ints) | (val & all_ints);
352 break;
353 case CSR_MIDELEG:
354 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
355 break;
356 case CSR_MEDELEG: {
357 reg_t mask = 0;
358 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
359 #include "encoding.h"
360 #undef DECLARE_CAUSE
361 state.medeleg = (state.medeleg & ~mask) | (val & mask);
362 break;
363 }
364 case CSR_MINSTRET:
365 case CSR_MCYCLE:
366 if (xlen == 32)
367 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
368 else
369 state.minstret = val;
370 break;
371 case CSR_MINSTRETH:
372 case CSR_MCYCLEH:
373 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
374 break;
375 case CSR_SCOUNTEREN:
376 state.scounteren = val;
377 break;
378 case CSR_MCOUNTEREN:
379 state.mcounteren = val;
380 break;
381 case CSR_SSTATUS: {
382 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
383 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
384 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
385 }
386 case CSR_SIP: {
387 reg_t mask = MIP_SSIP & state.mideleg;
388 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
389 }
390 case CSR_SIE:
391 return set_csr(CSR_MIE,
392 (state.mie & ~state.mideleg) | (val & state.mideleg));
393 case CSR_SPTBR: {
394 mmu->flush_tlb();
395 if (max_xlen == 32)
396 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
397 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
398 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
399 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
400 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
401 break;
402 }
403 case CSR_SEPC: state.sepc = val; break;
404 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
405 case CSR_SSCRATCH: state.sscratch = val; break;
406 case CSR_SCAUSE: state.scause = val; break;
407 case CSR_SBADADDR: state.sbadaddr = val; break;
408 case CSR_MEPC: state.mepc = val; break;
409 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
410 case CSR_MSCRATCH: state.mscratch = val; break;
411 case CSR_MCAUSE: state.mcause = val; break;
412 case CSR_MBADADDR: state.mbadaddr = val; break;
413 case CSR_MISA: {
414 if (!(val & (1L << ('F' - 'A'))))
415 val &= ~(1L << ('D' - 'A'));
416
417 // allow MAFDC bits in MISA to be modified
418 reg_t mask = 0;
419 mask |= 1L << ('M' - 'A');
420 mask |= 1L << ('A' - 'A');
421 mask |= 1L << ('F' - 'A');
422 mask |= 1L << ('D' - 'A');
423 mask |= 1L << ('C' - 'A');
424 mask &= max_isa;
425
426 isa = (val & mask) | (isa & ~mask);
427 break;
428 }
429 case CSR_TSELECT:
430 if (val < state.num_triggers) {
431 state.tselect = val;
432 }
433 break;
434 case CSR_TDATA1:
435 {
436 mcontrol_t *mc = &state.mcontrol[state.tselect];
437 if (mc->dmode && !state.dcsr.cause) {
438 break;
439 }
440 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
441 mc->select = get_field(val, MCONTROL_SELECT);
442 mc->timing = get_field(val, MCONTROL_TIMING);
443 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
444 mc->chain = get_field(val, MCONTROL_CHAIN);
445 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
446 mc->m = get_field(val, MCONTROL_M);
447 mc->h = get_field(val, MCONTROL_H);
448 mc->s = get_field(val, MCONTROL_S);
449 mc->u = get_field(val, MCONTROL_U);
450 mc->execute = get_field(val, MCONTROL_EXECUTE);
451 mc->store = get_field(val, MCONTROL_STORE);
452 mc->load = get_field(val, MCONTROL_LOAD);
453 // Assume we're here because of csrw.
454 if (mc->execute)
455 mc->timing = 0;
456 trigger_updated();
457 }
458 break;
459 case CSR_TDATA2:
460 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
461 break;
462 }
463 if (state.tselect < state.num_triggers) {
464 state.tdata2[state.tselect] = val;
465 }
466 break;
467 case CSR_DCSR:
468 state.dcsr.prv = get_field(val, DCSR_PRV);
469 state.dcsr.step = get_field(val, DCSR_STEP);
470 // TODO: ndreset and fullreset
471 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
472 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
473 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
474 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
475 state.dcsr.halt = get_field(val, DCSR_HALT);
476 break;
477 case CSR_DPC:
478 state.dpc = val;
479 break;
480 case CSR_DSCRATCH:
481 state.dscratch = val;
482 break;
483 }
484 }
485
486 reg_t processor_t::get_csr(int which)
487 {
488 uint32_t ctr_en = -1;
489 if (state.prv < PRV_M)
490 ctr_en &= state.mcounteren;
491 if (state.prv < PRV_S)
492 ctr_en &= state.scounteren;
493 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
494
495 if (ctr_ok) {
496 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
497 return 0;
498 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
499 return 0;
500 }
501 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
502 return 0;
503 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
504 return 0;
505 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
506 return 0;
507
508 switch (which)
509 {
510 case CSR_FFLAGS:
511 require_fp;
512 if (!supports_extension('F'))
513 break;
514 return state.fflags;
515 case CSR_FRM:
516 require_fp;
517 if (!supports_extension('F'))
518 break;
519 return state.frm;
520 case CSR_FCSR:
521 require_fp;
522 if (!supports_extension('F'))
523 break;
524 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
525 case CSR_INSTRET:
526 case CSR_CYCLE:
527 if (ctr_ok)
528 return state.minstret;
529 break;
530 case CSR_MINSTRET:
531 case CSR_MCYCLE:
532 return state.minstret;
533 case CSR_MINSTRETH:
534 case CSR_MCYCLEH:
535 if (xlen == 32)
536 return state.minstret >> 32;
537 break;
538 case CSR_SCOUNTEREN: return state.scounteren;
539 case CSR_MCOUNTEREN: return state.mcounteren;
540 case CSR_SSTATUS: {
541 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
542 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_UXL;
543 reg_t sstatus = state.mstatus & mask;
544 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
545 (sstatus & SSTATUS_XS) == SSTATUS_XS)
546 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
547 return sstatus;
548 }
549 case CSR_SIP: return state.mip & state.mideleg;
550 case CSR_SIE: return state.mie & state.mideleg;
551 case CSR_SEPC: return state.sepc;
552 case CSR_SBADADDR: return state.sbadaddr;
553 case CSR_STVEC: return state.stvec;
554 case CSR_SCAUSE:
555 if (max_xlen > xlen)
556 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
557 return state.scause;
558 case CSR_SPTBR:
559 if (get_field(state.mstatus, MSTATUS_TVM))
560 require_privilege(PRV_M);
561 return state.sptbr;
562 case CSR_SSCRATCH: return state.sscratch;
563 case CSR_MSTATUS: return state.mstatus;
564 case CSR_MIP: return state.mip;
565 case CSR_MIE: return state.mie;
566 case CSR_MEPC: return state.mepc;
567 case CSR_MSCRATCH: return state.mscratch;
568 case CSR_MCAUSE: return state.mcause;
569 case CSR_MBADADDR: return state.mbadaddr;
570 case CSR_MISA: return isa;
571 case CSR_MARCHID: return 0;
572 case CSR_MIMPID: return 0;
573 case CSR_MVENDORID: return 0;
574 case CSR_MHARTID: return id;
575 case CSR_MTVEC: return state.mtvec;
576 case CSR_MEDELEG: return state.medeleg;
577 case CSR_MIDELEG: return state.mideleg;
578 case CSR_TSELECT: return state.tselect;
579 case CSR_TDATA1:
580 if (state.tselect < state.num_triggers) {
581 reg_t v = 0;
582 mcontrol_t *mc = &state.mcontrol[state.tselect];
583 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
584 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
585 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
586 v = set_field(v, MCONTROL_SELECT, mc->select);
587 v = set_field(v, MCONTROL_TIMING, mc->timing);
588 v = set_field(v, MCONTROL_ACTION, mc->action);
589 v = set_field(v, MCONTROL_CHAIN, mc->chain);
590 v = set_field(v, MCONTROL_MATCH, mc->match);
591 v = set_field(v, MCONTROL_M, mc->m);
592 v = set_field(v, MCONTROL_H, mc->h);
593 v = set_field(v, MCONTROL_S, mc->s);
594 v = set_field(v, MCONTROL_U, mc->u);
595 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
596 v = set_field(v, MCONTROL_STORE, mc->store);
597 v = set_field(v, MCONTROL_LOAD, mc->load);
598 return v;
599 } else {
600 return 0;
601 }
602 break;
603 case CSR_TDATA2:
604 if (state.tselect < state.num_triggers) {
605 return state.tdata2[state.tselect];
606 } else {
607 return 0;
608 }
609 break;
610 case CSR_TDATA3: return 0;
611 case CSR_DCSR:
612 {
613 uint32_t v = 0;
614 v = set_field(v, DCSR_XDEBUGVER, 1);
615 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
616 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
617 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
618 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
619 v = set_field(v, DCSR_STOPCYCLE, 0);
620 v = set_field(v, DCSR_STOPTIME, 0);
621 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
622 v = set_field(v, DCSR_STEP, state.dcsr.step);
623 v = set_field(v, DCSR_PRV, state.dcsr.prv);
624 return v;
625 }
626 case CSR_DPC:
627 return state.dpc;
628 case CSR_DSCRATCH:
629 return state.dscratch;
630 }
631 throw trap_illegal_instruction(0);
632 }
633
634 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
635 {
636 throw trap_illegal_instruction(0);
637 }
638
639 insn_func_t processor_t::decode_insn(insn_t insn)
640 {
641 // look up opcode in hash table
642 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
643 insn_desc_t desc = opcode_cache[idx];
644
645 if (unlikely(insn.bits() != desc.match)) {
646 // fall back to linear search
647 insn_desc_t* p = &instructions[0];
648 while ((insn.bits() & p->mask) != p->match)
649 p++;
650 desc = *p;
651
652 if (p->mask != 0 && p > &instructions[0]) {
653 if (p->match != (p-1)->match && p->match != (p+1)->match) {
654 // move to front of opcode list to reduce miss penalty
655 while (--p >= &instructions[0])
656 *(p+1) = *p;
657 instructions[0] = desc;
658 }
659 }
660
661 opcode_cache[idx] = desc;
662 opcode_cache[idx].match = insn.bits();
663 }
664
665 return xlen == 64 ? desc.rv64 : desc.rv32;
666 }
667
668 void processor_t::register_insn(insn_desc_t desc)
669 {
670 instructions.push_back(desc);
671 }
672
673 void processor_t::build_opcode_map()
674 {
675 struct cmp {
676 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
677 if (lhs.match == rhs.match)
678 return lhs.mask > rhs.mask;
679 return lhs.match > rhs.match;
680 }
681 };
682 std::sort(instructions.begin(), instructions.end(), cmp());
683
684 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
685 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
686 }
687
688 void processor_t::register_extension(extension_t* x)
689 {
690 for (auto insn : x->get_instructions())
691 register_insn(insn);
692 build_opcode_map();
693 for (auto disasm_insn : x->get_disasms())
694 disassembler->add_insn(disasm_insn);
695 if (ext != NULL)
696 throw std::logic_error("only one extension may be registered");
697 ext = x;
698 x->set_processor(this);
699 }
700
701 void processor_t::register_base_instructions()
702 {
703 #define DECLARE_INSN(name, match, mask) \
704 insn_bits_t name##_match = (match), name##_mask = (mask);
705 #include "encoding.h"
706 #undef DECLARE_INSN
707
708 #define DEFINE_INSN(name) \
709 REGISTER_INSN(this, name, name##_match, name##_mask)
710 #include "insn_list.h"
711 #undef DEFINE_INSN
712
713 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
714 build_opcode_map();
715 }
716
717 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
718 {
719 switch (addr)
720 {
721 case 0:
722 if (len <= 4) {
723 memset(bytes, 0, len);
724 bytes[0] = get_field(state.mip, MIP_MSIP);
725 return true;
726 }
727 break;
728 }
729
730 return false;
731 }
732
733 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
734 {
735 switch (addr)
736 {
737 case 0:
738 if (len <= 4) {
739 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
740 return true;
741 }
742 break;
743 }
744
745 return false;
746 }
747
748 void processor_t::trigger_updated()
749 {
750 mmu->flush_tlb();
751 mmu->check_triggers_fetch = false;
752 mmu->check_triggers_load = false;
753 mmu->check_triggers_store = false;
754
755 for (unsigned i = 0; i < state.num_triggers; i++) {
756 if (state.mcontrol[i].execute) {
757 mmu->check_triggers_fetch = true;
758 }
759 if (state.mcontrol[i].load) {
760 mmu->check_triggers_load = true;
761 }
762 if (state.mcontrol[i].store) {
763 mmu->check_triggers_store = true;
764 }
765 }
766 }