Theoretically support trigger timing.
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include "gdbserver.h"
11 #include <cinttypes>
12 #include <cmath>
13 #include <cstdlib>
14 #include <iostream>
15 #include <assert.h>
16 #include <limits.h>
17 #include <stdexcept>
18 #include <algorithm>
19
20 #undef STATE
21 #define STATE state
22
23 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
24 bool halt_on_reset)
25 : debug(false), sim(sim), ext(NULL), id(id), halt_on_reset(halt_on_reset)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112 }
113
114 void state_t::reset()
115 {
116 memset(this, 0, sizeof(*this));
117 prv = PRV_M;
118 pc = DEFAULT_RSTVEC;
119 mtvec = DEFAULT_MTVEC;
120 load_reservation = -1;
121 tselect = 0;
122 for (unsigned int i = 0; i < num_triggers; i++)
123 mcontrol[i].type = 2;
124 }
125
126 void processor_t::set_debug(bool value)
127 {
128 debug = value;
129 if (ext)
130 ext->set_debug(value);
131 }
132
133 void processor_t::set_histogram(bool value)
134 {
135 histogram_enabled = value;
136 #ifndef RISCV_ENABLE_HISTOGRAM
137 if (value) {
138 fprintf(stderr, "PC Histogram support has not been properly enabled;");
139 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
140 }
141 #endif
142 }
143
144 void processor_t::reset()
145 {
146 state.reset();
147 state.dcsr.halt = halt_on_reset;
148 halt_on_reset = false;
149 set_csr(CSR_MSTATUS, state.mstatus);
150
151 if (ext)
152 ext->reset(); // reset the extension
153 }
154
155 void processor_t::raise_interrupt(reg_t which)
156 {
157 throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
158 }
159
160 // Count number of contiguous 0 bits starting from the LSB.
161 static int ctz(reg_t val)
162 {
163 int res = 0;
164 if (val)
165 while ((val & 1) == 0)
166 val >>= 1, res++;
167 return res;
168 }
169
170 void processor_t::take_interrupt()
171 {
172 reg_t pending_interrupts = state.mip & state.mie;
173
174 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
175 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
176 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
177
178 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
179 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
180 enabled_interrupts |= pending_interrupts & state.mideleg & -s_enabled;
181
182 if (enabled_interrupts)
183 raise_interrupt(ctz(enabled_interrupts));
184 }
185
186 void processor_t::set_privilege(reg_t prv)
187 {
188 assert(prv <= PRV_M);
189 if (prv == PRV_H)
190 prv = PRV_U;
191 mmu->flush_tlb();
192 state.prv = prv;
193 }
194
195 void processor_t::enter_debug_mode(uint8_t cause)
196 {
197 state.dcsr.cause = cause;
198 state.dcsr.prv = state.prv;
199 set_privilege(PRV_M);
200 state.dpc = state.pc;
201 state.pc = DEBUG_ROM_START;
202 }
203
204 void processor_t::take_trap(trap_t& t, reg_t epc)
205 {
206 if (debug) {
207 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
208 id, t.name(), epc);
209 if (t.has_badaddr())
210 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
211 t.get_badaddr());
212 }
213
214 if (t.cause() == CAUSE_BREAKPOINT && (
215 (state.prv == PRV_M && state.dcsr.ebreakm) ||
216 (state.prv == PRV_H && state.dcsr.ebreakh) ||
217 (state.prv == PRV_S && state.dcsr.ebreaks) ||
218 (state.prv == PRV_U && state.dcsr.ebreaku))) {
219 enter_debug_mode(DCSR_CAUSE_SWBP);
220 return;
221 }
222
223 if (state.dcsr.cause) {
224 state.pc = DEBUG_ROM_EXCEPTION;
225 return;
226 }
227
228 // by default, trap to M-mode, unless delegated to S-mode
229 reg_t bit = t.cause();
230 reg_t deleg = state.medeleg;
231 if (bit & ((reg_t)1 << (max_xlen-1)))
232 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
233 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
234 // handle the trap in S-mode
235 state.pc = state.stvec;
236 state.scause = t.cause();
237 state.sepc = epc;
238 if (t.has_badaddr())
239 state.sbadaddr = t.get_badaddr();
240
241 reg_t s = state.mstatus;
242 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
243 s = set_field(s, MSTATUS_SPP, state.prv);
244 s = set_field(s, MSTATUS_SIE, 0);
245 set_csr(CSR_MSTATUS, s);
246 set_privilege(PRV_S);
247 } else {
248 state.pc = state.mtvec;
249 state.mepc = epc;
250 state.mcause = t.cause();
251 if (t.has_badaddr())
252 state.mbadaddr = t.get_badaddr();
253
254 reg_t s = state.mstatus;
255 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
256 s = set_field(s, MSTATUS_MPP, state.prv);
257 s = set_field(s, MSTATUS_MIE, 0);
258 set_csr(CSR_MSTATUS, s);
259 set_privilege(PRV_M);
260 }
261
262 yield_load_reservation();
263 }
264
265 void processor_t::disasm(insn_t insn)
266 {
267 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
268 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
269 id, state.pc, bits, disassembler->disassemble(insn).c_str());
270 }
271
272 static bool validate_vm(int max_xlen, reg_t vm)
273 {
274 if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
275 return true;
276 if (max_xlen == 32 && vm == VM_SV32)
277 return true;
278 return vm == VM_MBARE;
279 }
280
281 int processor_t::paddr_bits()
282 {
283 assert(xlen == max_xlen);
284 return max_xlen == 64 ? 50 : 34;
285 }
286
287 void processor_t::set_csr(int which, reg_t val)
288 {
289 val = zext_xlen(val);
290 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
291 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
292 switch (which)
293 {
294 case CSR_FFLAGS:
295 dirty_fp_state;
296 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
297 break;
298 case CSR_FRM:
299 dirty_fp_state;
300 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
301 break;
302 case CSR_FCSR:
303 dirty_fp_state;
304 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
305 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
306 break;
307 case CSR_MSTATUS: {
308 if ((val ^ state.mstatus) &
309 (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM | MSTATUS_MXR))
310 mmu->flush_tlb();
311
312 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
313 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
314 | MSTATUS_MPP | MSTATUS_MXR | (ext ? MSTATUS_XS : 0);
315
316 if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
317 mask |= MSTATUS_VM;
318
319 state.mstatus = (state.mstatus & ~mask) | (val & mask);
320
321 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
322 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
323 if (max_xlen == 32)
324 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
325 else
326 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
327
328 // spike supports the notion of xlen < max_xlen, but current priv spec
329 // doesn't provide a mechanism to run RV32 software on an RV64 machine
330 xlen = max_xlen;
331 break;
332 }
333 case CSR_MIP: {
334 reg_t mask = MIP_SSIP | MIP_STIP;
335 state.mip = (state.mip & ~mask) | (val & mask);
336 break;
337 }
338 case CSR_MIE:
339 state.mie = (state.mie & ~all_ints) | (val & all_ints);
340 break;
341 case CSR_MIDELEG:
342 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
343 break;
344 case CSR_MEDELEG: {
345 reg_t mask = 0;
346 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
347 #include "encoding.h"
348 #undef DECLARE_CAUSE
349 state.medeleg = (state.medeleg & ~mask) | (val & mask);
350 break;
351 }
352 case CSR_MUCOUNTEREN:
353 state.mucounteren = val & 7;
354 break;
355 case CSR_MSCOUNTEREN:
356 state.mscounteren = val & 7;
357 break;
358 case CSR_SSTATUS: {
359 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
360 | SSTATUS_XS | SSTATUS_PUM;
361 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
362 }
363 case CSR_SIP:
364 return set_csr(CSR_MIP,
365 (state.mip & ~state.mideleg) | (val & state.mideleg));
366 case CSR_SIE:
367 return set_csr(CSR_MIE,
368 (state.mie & ~state.mideleg) | (val & state.mideleg));
369 case CSR_SPTBR: {
370 // upper bits of sptbr are the ASID; we only support ASID = 0
371 state.sptbr = val & (((reg_t)1 << (paddr_bits() - PGSHIFT)) - 1);
372 break;
373 }
374 case CSR_SEPC: state.sepc = val; break;
375 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
376 case CSR_SSCRATCH: state.sscratch = val; break;
377 case CSR_SCAUSE: state.scause = val; break;
378 case CSR_SBADADDR: state.sbadaddr = val; break;
379 case CSR_MEPC: state.mepc = val; break;
380 case CSR_MTVEC: state.mtvec = val >> 2 << 2; break;
381 case CSR_MSCRATCH: state.mscratch = val; break;
382 case CSR_MCAUSE: state.mcause = val; break;
383 case CSR_MBADADDR: state.mbadaddr = val; break;
384 case CSR_TSELECT:
385 if (val < state.num_triggers) {
386 state.tselect = val;
387 }
388 break;
389 case CSR_TDATA1:
390 {
391 mcontrol_t *mc = &state.mcontrol[state.tselect];
392 if (mc->dmode && !state.dcsr.cause) {
393 throw trap_illegal_instruction();
394 }
395 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
396 mc->select = get_field(val, MCONTROL_SELECT);
397 mc->timing = get_field(val, MCONTROL_TIMING);
398 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
399 mc->chain = get_field(val, MCONTROL_CHAIN);
400 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
401 mc->m = get_field(val, MCONTROL_M);
402 mc->h = get_field(val, MCONTROL_H);
403 mc->s = get_field(val, MCONTROL_S);
404 mc->u = get_field(val, MCONTROL_U);
405 mc->execute = get_field(val, MCONTROL_EXECUTE);
406 mc->store = get_field(val, MCONTROL_STORE);
407 mc->load = get_field(val, MCONTROL_LOAD);
408 // Assume we're here because of csrw.
409 if (mc->execute)
410 mc->timing = 0;
411 if (mc->load)
412 mc->timing = 1;
413 trigger_updated();
414 }
415 break;
416 case CSR_TDATA2:
417 if (state.tselect < state.num_triggers) {
418 state.tdata2[state.tselect] = val;
419 }
420 break;
421 case CSR_DCSR:
422 state.dcsr.prv = get_field(val, DCSR_PRV);
423 state.dcsr.step = get_field(val, DCSR_STEP);
424 // TODO: ndreset and fullreset
425 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
426 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
427 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
428 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
429 state.dcsr.halt = get_field(val, DCSR_HALT);
430 break;
431 case CSR_DPC:
432 state.dpc = val;
433 break;
434 case CSR_DSCRATCH:
435 state.dscratch = val;
436 break;
437 }
438 }
439
440 reg_t processor_t::get_csr(int which)
441 {
442 switch (which)
443 {
444 case CSR_FFLAGS:
445 require_fp;
446 if (!supports_extension('F'))
447 break;
448 return state.fflags;
449 case CSR_FRM:
450 require_fp;
451 if (!supports_extension('F'))
452 break;
453 return state.frm;
454 case CSR_FCSR:
455 require_fp;
456 if (!supports_extension('F'))
457 break;
458 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
459 case CSR_TIME:
460 case CSR_INSTRET:
461 case CSR_CYCLE:
462 if ((state.mucounteren >> (which & (xlen-1))) & 1)
463 return get_csr(which + (CSR_MCYCLE - CSR_CYCLE));
464 break;
465 case CSR_STIME:
466 case CSR_SINSTRET:
467 case CSR_SCYCLE:
468 if ((state.mscounteren >> (which & (xlen-1))) & 1)
469 return get_csr(which + (CSR_MCYCLE - CSR_SCYCLE));
470 break;
471 case CSR_MUCOUNTEREN: return state.mucounteren;
472 case CSR_MSCOUNTEREN: return state.mscounteren;
473 case CSR_MUCYCLE_DELTA: return 0;
474 case CSR_MUTIME_DELTA: return 0;
475 case CSR_MUINSTRET_DELTA: return 0;
476 case CSR_MSCYCLE_DELTA: return 0;
477 case CSR_MSTIME_DELTA: return 0;
478 case CSR_MSINSTRET_DELTA: return 0;
479 case CSR_MUCYCLE_DELTAH: if (xlen > 32) break; else return 0;
480 case CSR_MUTIME_DELTAH: if (xlen > 32) break; else return 0;
481 case CSR_MUINSTRET_DELTAH: if (xlen > 32) break; else return 0;
482 case CSR_MSCYCLE_DELTAH: if (xlen > 32) break; else return 0;
483 case CSR_MSTIME_DELTAH: if (xlen > 32) break; else return 0;
484 case CSR_MSINSTRET_DELTAH: if (xlen > 32) break; else return 0;
485 case CSR_MCYCLE: return state.minstret;
486 case CSR_MINSTRET: return state.minstret;
487 case CSR_MCYCLEH: if (xlen > 32) break; else return state.minstret >> 32;
488 case CSR_MINSTRETH: if (xlen > 32) break; else return state.minstret >> 32;
489 case CSR_SSTATUS: {
490 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
491 | SSTATUS_XS | SSTATUS_PUM;
492 reg_t sstatus = state.mstatus & mask;
493 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
494 (sstatus & SSTATUS_XS) == SSTATUS_XS)
495 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
496 return sstatus;
497 }
498 case CSR_SIP: return state.mip & state.mideleg;
499 case CSR_SIE: return state.mie & state.mideleg;
500 case CSR_SEPC: return state.sepc;
501 case CSR_SBADADDR: return state.sbadaddr;
502 case CSR_STVEC: return state.stvec;
503 case CSR_SCAUSE:
504 if (max_xlen > xlen)
505 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
506 return state.scause;
507 case CSR_SPTBR: return state.sptbr;
508 case CSR_SSCRATCH: return state.sscratch;
509 case CSR_MSTATUS: return state.mstatus;
510 case CSR_MIP: return state.mip;
511 case CSR_MIE: return state.mie;
512 case CSR_MEPC: return state.mepc;
513 case CSR_MSCRATCH: return state.mscratch;
514 case CSR_MCAUSE: return state.mcause;
515 case CSR_MBADADDR: return state.mbadaddr;
516 case CSR_MISA: return isa;
517 case CSR_MARCHID: return 0;
518 case CSR_MIMPID: return 0;
519 case CSR_MVENDORID: return 0;
520 case CSR_MHARTID: return id;
521 case CSR_MTVEC: return state.mtvec;
522 case CSR_MEDELEG: return state.medeleg;
523 case CSR_MIDELEG: return state.mideleg;
524 case CSR_TSELECT: return state.tselect;
525 case CSR_TDATA1:
526 if (state.tselect < state.num_triggers) {
527 reg_t v = 0;
528 mcontrol_t *mc = &state.mcontrol[state.tselect];
529 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
530 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
531 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
532 v = set_field(v, MCONTROL_SELECT, mc->select);
533 v = set_field(v, MCONTROL_TIMING, mc->timing);
534 v = set_field(v, MCONTROL_ACTION, mc->action);
535 v = set_field(v, MCONTROL_CHAIN, mc->chain);
536 v = set_field(v, MCONTROL_MATCH, mc->match);
537 v = set_field(v, MCONTROL_M, mc->m);
538 v = set_field(v, MCONTROL_H, mc->h);
539 v = set_field(v, MCONTROL_S, mc->s);
540 v = set_field(v, MCONTROL_U, mc->u);
541 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
542 v = set_field(v, MCONTROL_STORE, mc->store);
543 v = set_field(v, MCONTROL_LOAD, mc->load);
544 return v;
545 } else {
546 return 0;
547 }
548 break;
549 case CSR_TDATA2:
550 if (state.tselect < state.num_triggers) {
551 return state.tdata2[state.tselect];
552 } else {
553 return 0;
554 }
555 break;
556 case CSR_DCSR:
557 {
558 uint32_t v = 0;
559 v = set_field(v, DCSR_XDEBUGVER, 1);
560 v = set_field(v, DCSR_NDRESET, 0);
561 v = set_field(v, DCSR_FULLRESET, 0);
562 v = set_field(v, DCSR_PRV, state.dcsr.prv);
563 v = set_field(v, DCSR_STEP, state.dcsr.step);
564 v = set_field(v, DCSR_DEBUGINT, sim->debug_module.get_interrupt(id));
565 v = set_field(v, DCSR_STOPCYCLE, 0);
566 v = set_field(v, DCSR_STOPTIME, 0);
567 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
568 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
569 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
570 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
571 v = set_field(v, DCSR_HALT, state.dcsr.halt);
572 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
573 return v;
574 }
575 case CSR_DPC:
576 return state.dpc;
577 case CSR_DSCRATCH:
578 return state.dscratch;
579 }
580 throw trap_illegal_instruction();
581 }
582
583 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
584 {
585 throw trap_illegal_instruction();
586 }
587
588 insn_func_t processor_t::decode_insn(insn_t insn)
589 {
590 // look up opcode in hash table
591 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
592 insn_desc_t desc = opcode_cache[idx];
593
594 if (unlikely(insn.bits() != desc.match)) {
595 // fall back to linear search
596 insn_desc_t* p = &instructions[0];
597 while ((insn.bits() & p->mask) != p->match)
598 p++;
599 desc = *p;
600
601 if (p->mask != 0 && p > &instructions[0]) {
602 if (p->match != (p-1)->match && p->match != (p+1)->match) {
603 // move to front of opcode list to reduce miss penalty
604 while (--p >= &instructions[0])
605 *(p+1) = *p;
606 instructions[0] = desc;
607 }
608 }
609
610 opcode_cache[idx] = desc;
611 opcode_cache[idx].match = insn.bits();
612 }
613
614 return xlen == 64 ? desc.rv64 : desc.rv32;
615 }
616
617 void processor_t::register_insn(insn_desc_t desc)
618 {
619 instructions.push_back(desc);
620 }
621
622 void processor_t::build_opcode_map()
623 {
624 struct cmp {
625 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
626 if (lhs.match == rhs.match)
627 return lhs.mask > rhs.mask;
628 return lhs.match > rhs.match;
629 }
630 };
631 std::sort(instructions.begin(), instructions.end(), cmp());
632
633 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
634 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
635 }
636
637 void processor_t::register_extension(extension_t* x)
638 {
639 for (auto insn : x->get_instructions())
640 register_insn(insn);
641 build_opcode_map();
642 for (auto disasm_insn : x->get_disasms())
643 disassembler->add_insn(disasm_insn);
644 if (ext != NULL)
645 throw std::logic_error("only one extension may be registered");
646 ext = x;
647 x->set_processor(this);
648 }
649
650 void processor_t::register_base_instructions()
651 {
652 #define DECLARE_INSN(name, match, mask) \
653 insn_bits_t name##_match = (match), name##_mask = (mask);
654 #include "encoding.h"
655 #undef DECLARE_INSN
656
657 #define DEFINE_INSN(name) \
658 REGISTER_INSN(this, name, name##_match, name##_mask)
659 #include "insn_list.h"
660 #undef DEFINE_INSN
661
662 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
663 build_opcode_map();
664 }
665
666 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
667 {
668 return false;
669 }
670
671 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
672 {
673 switch (addr)
674 {
675 case 0:
676 state.mip &= ~MIP_MSIP;
677 if (bytes[0] & 1)
678 state.mip |= MIP_MSIP;
679 return true;
680
681 default:
682 return false;
683 }
684 }
685
686 void processor_t::trigger_updated()
687 {
688 mmu->flush_tlb();
689 mmu->check_triggers_fetch = false;
690 mmu->check_triggers_load = false;
691 mmu->check_triggers_store = false;
692
693 for (unsigned i = 0; i < state.num_triggers; i++) {
694 if (state.mcontrol[i].execute) {
695 mmu->check_triggers_fetch = true;
696 }
697 if (state.mcontrol[i].load) {
698 mmu->check_triggers_load = true;
699 }
700 if (state.mcontrol[i].store) {
701 mmu->check_triggers_store = true;
702 }
703 }
704 }